(от гео... и ...метрия)
раздел математики, в котором изучаются пространственные отношения (напр., взаимное расположение) и формы (напр., геометрические тела) и их обобщения. Возникновение геометрии относится к глубокой древности и обусловлено практическими потребностями измерения земельных участков, объемов и др. Строгое построение геометрии как системы предложений (теорем), последовательно выводимых из немногочисленных определений основных понятий и истин, принимаемых без доказательства (аксиом), было дано в Др. Греции. Такое изложение геометрии в "Началах" Евклида (ок. 300 до н. э. ) в течение почти 2 тыс. лет служило образцом применения аксиоматического метода и основного построения т. н. евклидовой геометрии. Возрождение наук и искусств в Европе стимулировало развитие геометрии: теоретической основой построения изображений явилась проективная геометрия. Р. Декарт предложил метод координат, позволивший связать геометрию с алгеброй и математическим анализом, что породило аналитическую геометрию и дифференциальную геометрию. В 1826 Н. И. Лобачевский построил т. н. Лобачевского геометрию, отличающуюся от евклидовой аксиомой (постулатом) о параллельных. В сер. 19 в. были рассмотрены многомерные пространства. Некоторый общий принцип построения различных обобщенных понятий пространства (и соответствующих им геометрий) на основе теории групп преобразований был дан Ф. Клейном (1872). Обширная область геометрии - риманова геометрия - была заложена во 2-й пол. 19 в. в работах Б. Римана. Обобщение основного предмета геометрии - пространства - привело к плодотворному применению геометрии в самых различных областях не только математики, но и других наук (физики, механики и др.).