К статье СВЕРХВЫСОКИХ ЧАСТОТ ДИАПАЗОН
Быстрый прогресс в области СВЧ-техники в значительной мере связан с изобретением специальных электровакуумных приборов - магнетрона и клистрона, способных генерировать большие количества СВЧ-энергии. Генератор на обычном вакуумном триоде, используемый на низких частотах, в СВЧ-диапазоне оказывается весьма неэффективным.
Двумя главными недостатками триода как СВЧ-генератора являются конечное время пролета электрона и межэлектродная емкость. Первый связан с тем, что электрону требуется некоторое (хотя и малое) время, чтобы пролететь между электродами вакуумной лампы. За это время СВЧ-поле успевает изменить свое направление на обратное, так что и электрон вынужден повернуть обратно, не долетев до другого электрода. В результате электроны без всякой пользы колеблются внутри лампы, не отдавая свою энергию в колебательный контур внешней цепи.
Магнетрон. В магнетроне, изобретенном в Великобритании перед Второй мировой войной, эти недостатки отсутствуют, поскольку за основу взят совершенно иной подход к генерации СВЧ-излучения - принцип объемного резонатора. Подобно тому как у органной трубы данного размера имеются собственные акустические резонансные частоты, так и у объемного резонатора имеются собственные электромагнитные резонансы. Стенки резонатора действуют как индуктивность, а пространство между ними - как емкость некой резонансной цепи. Таким образом, объемный резонатор подобен параллельному резонансному контуру низкочастотного генератора с отдельными конденсатором и катушкой индуктивности. Размеры объемного резонатора выбираются, конечно, так, чтобы данному сочетанию емкости и индуктивности соответствовала нужная резонансная сверхвысокая частота.
В магнетроне (рис. 1) предусмотрено несколько объемных резонаторов, симметрично расположенных вокруг катода, находящегося в центре. Прибор помещают между полюсами сильного магнита. При этом электроны, испускаемые катодом, под действием магнитного поля вынуждены двигаться по круговым траекториям. Их скорость такова, что они в строго определенное время пересекают на периферии открытые пазы резонаторов. При этом они отдают свою кинетическую энергию, возбуждая колебания в резонаторах. Затем электроны возвращаются на катод, и процесс повторяется. Благодаря такому устройству время пролета и межэлектродные емкости не мешают генерации СВЧ-энергии.
Магнетроны могут быть сделаны большого размера, и тогда они дают мощные импульсы СВЧ-энергии. Но у магнетрона имеются свои недостатки. Например, резонаторы для очень высоких частот становятся столь малыми, что их трудно изготавливать, а сам такой магнетрон из-за своих малых размеров не может быть достаточно мощным. Кроме того, для магнетрона нужен тяжелый магнит, причем требуемая масса магнита возрастает с увеличением мощности прибора. Поэтому для самолетных бортовых установок мощные магнетроны не подходят.
Клистрон. Для этого электровакуумного прибора, основанного на несколько ином принципе, не требуется внешнее магнитное поле. В клистроне (рис. 2) электроны движутся по прямой от катода к отражательной пластине, а затем обратно. При этом они пересекают открытый зазор объемного резонатора в форме бублика. Управляющая сетка и сетки резонатора группируют электроны в отдельные "сгустки", так что электроны пересекают зазор резонатора только в определенные моменты времени. Промежутки между сгустками согласованы с резонансной частотой резонатора таким образом, что кинетическая энергия электронов передается резонатору, вследствие чего в нем устанавливаются мощные электромагнитные колебания. Этот процесс можно сравнить с ритмичным раскачиванием первоначально неподвижных качелей.
Первые клистроны были довольно маломощными приборами, но позднее они побили все рекорды магнетронов как СВЧ-генераторов большой мощности. Были созданы клистроны, выдававшие до 10 млн. ватт мощности в импульсе и до 100 тыс. ватт в непрерывном режиме. Система клистронов исследовательского линейного ускорителя частиц выдает 50 млн. ватт СВЧ-мощности в импульсе.
Клистроны могут работать на частотах до 120 млрд. герц; однако при этом их выходная мощность, как правило, не превышает одного ватта. Разрабатываются варианты конструкции клистрона, рассчитанного на большие выходные мощности в миллиметровом диапазоне.
Клистроны могут также служить усилителями СВЧ-сигналов. Для этого нужно входной сигнал подавать на сетки объемного резонатора, и тогда плотность электронных сгустков будет изменяться в соответствии с этим сигналом.
Лампа бегущей волны (ЛБВ). Еще один электровакуумный прибор для генерации и усиления электромагнитных волн СВЧ-диапазона - лампа бегущей волны. Она представляет собой тонкую откачанную трубку, вставляемую в фокусирующую магнитную катушку. Внутри трубки имеется замедляющая проволочная спираль. Вдоль оси спирали проходит электронный луч, а по самой спирали бежит волна усиливаемого сигнала. Диаметр, длина и шаг спирали, а также скорость электронов подобраны таким образом, что электроны отдают часть своей кинетической энергии бегущей волне.
Радиоволны распространяются со скоростью света, тогда как скорость электронов в луче значительно меньше. Однако, поскольку СВЧ-сигнал вынужден идти по спирали, скорость его продвижения вдоль оси трубки близка к скорости электронного луча. Поэтому бегущая волна достаточно долго взаимодействует с электронами и усиливается, поглощая их энергию.
Если на лампу не подается внешний сигнал, то усиливается случайный электрический шум на некоторой резонансной частоте и ЛБВ бегущей волны работает как СВЧ-генератор, а не усилитель.
Выходная мощность ЛБВ значительно меньше, чем у магнетронов и клистронов на той же частоте. Однако ЛБВ допускают настройку в необычайно широком частотном диапазоне и могут служить очень чувствительными малошумящими усилителями. Такое сочетание свойств делает ЛБВ очень ценным прибором СВЧ-техники.
Плоские вакуумные триоды. Хотя клистроны и магнетроны более предпочтительны как СВЧ-генераторы, благодаря усовершенствованиям в какой-то мере восстановлена важная роль вакуумных триодов, особенно в качестве усилителей на частотах до 3 млрд. герц.
Трудности, связанные с временем пролета, устранены благодаря очень малым расстояниям между электродами. Нежелательные межэлектродные емкости сведены к минимуму, поскольку электроды сделаны сетчатыми, а все внешние соединения выполняются на больших кольцах, находящихся вне лампы. Как и принято в СВЧ-технике, применен объемный резонатор. Резонатор плотно охватывает лампу, и кольцевые соединители обеспечивают контакт по всей окружности резонатора.
Генератор на диоде Ганна. Такой полупроводниковый СВЧ-генератор был предложен в 1963 Дж.Ганном, сотрудником Уотсоновского научно-исследовательского центра корпорации ИБМ. В настоящее время подобные приборы дают мощности лишь порядка милливатт на частотах не более 24 млрд. герц. Но в этих пределах он имеет несомненные преимущества перед маломощными клистронами.
Поскольку диод Ганна представляет собой монокристалл арсенида галлия, он в принципе более стабилен и долговечен, нежели клистрон, в котором должен быть нагреваемый катод для создания потока электронов и необходим высокий вакуум. Кроме того, диод Ганна работает при сравнительно низком напряжении питания, тогда как для питания клистрона нужны громоздкие и дорогостоящие источники питания с напряжением от 1000 до 5000 В.