К статье ПОЛЕТА ТЕОРИЯ И ПРАКТИКА
Спиральная неустойчивость. В отличие от лодки или автомобиля самолет, предоставленный самому себе, не будет выдерживать сколь-нибудь долго свой курс. Если атмосферное возмущение (например, вызванный тепловой конвекцией восходящий поток воздуха) немного накренит самолет на правое крыло, то он начнет разворачиваться вправо. Это движение по кривой разворота будет увеличивать относительную скорость движения и подъемную силу на левом крыле и уменьшать их на правом крыле, вследствие чего самолет еще более накренится на правое крыло и будет разворачиваться еще быстрее. Это явление называется спиральной неустойчивостью. Однако скорость нарастания спиральной неустойчивости мала, и летчик без труда контролирует это движение в условиях хорошей видимости ориентиров.
В отсутствие видимости, например при полете в густом тумане или в сплошной облачности, летчик не сможет контролировать возникновение и развитие спиральной неустойчивости, так как без приборов он не в состоянии определить, куда повернул самолет и повернул ли он вообще. По мере нарастания крена вертикальная составляющая подъемной силы становится меньше, чем вес самолета, самолет начинает проваливаться и быстро теряет высоту. Попытки уменьшить скорость снижения, используя руль высоты, чтобы поднять выше нос самолета, приводят к еще большему увеличению крутизны спирали. Скорость снижения быстро возрастает на последней стадии такого неконтролируемого движения, которое летчики называют "кладбищенской спиралью".
Первые меры, направленные на исключение этой ситуации, сводились к попыткам улучшить характеристики спиральной устойчивости самолета посредством уменьшения площади его вертикального оперения и увеличения угла поперечного V, как того требуют теория динамической устойчивости и результаты экспериментальных исследований на моделях самолетов. Однако оказалось, что эти меры приводят к ухудшению поперечной управляемости самолета, возникновению сваливания и затягиванию в штопор, которые еще более опасны, чем спиральная неустойчивость.
Гироскопические датчики. Чтобы управлять спиральной неустойчивостью при полете в отсутствие видимости, летчик должен иметь полную информацию о движении самолета в инерциальной системе координат. Эту информацию он получает, используя три гироскопических датчика: указатель поворота и скольжения, авиагоризонт и гирокомпас. Указатель поворота и скольжения дает летчику информацию об угловой скорости и направлении разворота и о соответствии угла и скорости крена угловой скорости разворота. Авиагоризонт выдает угол тангажа самолета и угол крена относительно горизонта. Гирокомпас дает информацию об изменении курса, так как обычный компас с магнитной стрелкой неэффективен при выполнении самолетом разворота. См. также ГИРОСКОП .
В 1920-х годах американский летчик Г.Старк разработал технику пилотирования самолета по приборам в отсутствие видимости. Согласно его рекомендациям, летчик сначала устраняет отклонение от курса, используя указатель поворота и руль направления. Затем он устраняет крен, используя шариковый указатель крена и элероны при скоординированном отклонении руля направления для компенсации рыскания, вызванного элеронами. Наконец, с помощью руля высоты летчик выравнивает скорость полета. Если при крейсерской скорости полета самолет теряет высоту, то для сохранения высоты полета необходимо увеличить мощность двигателя.
Полет по приборам. Впервые весь полет, от взлета до посадки, ориентируясь только по приборам, осуществил лейтенант Дж.Дулитл в сентябре 1929. Он использовал упомянутые выше гироскопические датчики и, кроме того, высокочувствительный высотомер, курсовой радиомаяк и веерные радиомаркеры. Этот полет подготовила группа ученых при финансовой поддержке Фонда Гуггенхайма.
Автопилоты. Один из первых автопилотов использовал У.Пост, который в одиночку облетел земной шар в 1933. Эти автопилоты управляли самолетом хуже, чем летчики, и часто возникали опасные ситуации, вызванные замедленной реакцией на возмущения и несовершенством их конструкции. Позднее - к тому времени, когда самолеты стали летать на больших высотах, где их динамическая устойчивость ухудшалась до такой степени, что ими стало трудно управлять даже летчикам, - были созданы усовершенствованные автопилоты, которые позволяли более плавно "вести" самолет, чем это могли бы сделать сами летчики.
Первые автопилоты предназначались для поддержания курса, и их приходилось перестраивать всякий раз, как только курс самолета нужно было изменить. В дальнейшем в автопилотах было использовано устройство, которое позволило летчику настраивать систему посредством поворота ручек на приборной панели автопилота. Затем были разработаны автопилоты, которые полностью управляли полетом, например, самолета-истребителя при заходе на цель для открытия огня и делали это лучше, чем летчик. Автопилот, способный выполнить такие операции, стали называть программируемым. Современный программируемый автопилот может выполнять все действия по пилотированию самолета, и в будущем, по-видимому, на всех военных и гражданских самолетах будут устанавливаться такие автопилоты, а обязанности экипажа самолета сведутся к контролю автоматизированной системы управления полетом летательного аппарата.