Математику обычно определяют, перечисляя названия некоторых из ее традиционных разделов. Прежде всего, это арифметика, которая занимается изучением чисел, отношений между ними и правил действий над числами. Факты арифметики допускают различные конкретные интерпретации; например, соотношение 2 + 3 = 4 + 1 соответствует утверждению, что две и три книги составляют столько же книг, сколько четыре и одна. Любое соотношение типа 2 + 3 = 4 + 1, т.е. отношение между чисто математическими объектами без ссылки на какую бы то ни было интерпретацию из физического мира, называется абстрактным. Абстрактный характер математики позволяет использовать ее при решении самых разных проблем. Например, алгебра, рассматривающая операции над числами, позволяет решать задачи, выходящие за рамки арифметики. Более конкретным разделом математики является геометрия, основная задача которой - изучение размеров и форм объектов. Сочетание алгебраических методов с геометрическими приводит, с одной стороны, к тригонометрии (первоначально посвященной изучению геометрических треугольников, а теперь охватывающей значительно больший круг вопросов), а с другой стороны - к аналитической геометрии, в которой геометрические тела и фигуры исследуются алгебраическими методами. Существуют несколько разделов высшей алгебры и геометрии, обладающих более высокой степенью абстракции и не занимающихся изучением обычных чисел и обычных геометрических фигур; самая абстрактная из геометрических дисциплин называется топологией.
Математический анализ занимается изучением величин, изменяющихся в пространстве или во времени, и опирается на два основных понятия - функцию и предел, которые не встречаются в более элементарных разделах математики. Первоначально математический анализ состоял из дифференциального и интегрального исчислений, но теперь включает в себя и другие разделы.
Различают две основные области математики - чистую математику, в которой акцент делается на дедуктивные рассуждения, и прикладную математику. Термин "прикладная математика" иногда относят к тем ветвям математики, которые созданы специально для того, чтобы удовлетворить запросы и требования науки, а иногда - к тем разделам различных наук (физики, экономики и т.п.), которые используют математику как средство решения своих задач. Многие распространенные заблуждения в отношении математики возникают в результате смешения этих двух толкований "прикладной математики". Арифметика может служить примером прикладной математики в первом смысле, а бухгалтерский учет - во втором.
Вопреки широко распространенному мнению, математика продолжает быстро развиваться. Журнал "Математическое обозрение" ("Mathematical Review") публикует ежегодно ок. 8000 кратких резюме статей, содержащих последние результаты - новые математические факты, новые доказательства старых фактов и даже сведения о совершенно новых областях математики. Существующая ныне тенденция в математическом образовании заключается в стремлении познакомить учащихся с современными, более абстрактными математическими идеями на более ранних стадиях преподавания математики. См. также МАТЕМАТИКИ ИСТОРИЯ . Математика - один из краеугольных камней цивилизации, однако очень немногие люди имеют представление о современном состоянии дел в этой науке. Математика за последние сто лет претерпела огромные изменения, касающиеся как предмета, так и методов исследования. В данной статье мы попытаемся дать общее представление об основных этапах эволюции современной математики, главными результатами которой можно считать, с одной стороны, увеличение разрыва между чистой и прикладной математикой, а с другой - полное переосмысление традиционных областей математики.
См. также:
МАТЕМАТИКА: РАЗВИТИЕ МАТЕМАТИЧЕСКОГО МЕТОДА
МАТЕМАТИКА: СОВРЕМЕННАЯ МАТЕМАТИКА
МАТЕМАТИКА: КЛАССИФИКАЦИЯ
МАТЕМАТИКА: ФИЛОСОФСКИЕ ТРУДНОСТИ
МАТЕМАТИКА: МАТЕМАТИКА И РЕАЛЬНЫЙ МИР