Значение слова ЭНЕРГОСИСТЕМА в Большой советской энциклопедии, БСЭ

ЭНЕРГОСИСТЕМА

общеэнергетическая система, объединенная система энергетики, совокупность энергетических ресурсов всех видов, методов их получения (добычи), преобразования, распределения и использования, а также технических средств и организационных комплексов, обеспечивающих снабжение потребителей всеми видами энергии. Э. называют иногда большими системами энергетики; они имеют иерархическую структуру, уровнями которой являются страна (государство), район, крупный промышленный, транспортный или с.-х. узел, отдельное предприятие. Уровню страны обычно соответствуют единые энергетические системы; уровню нескольких районов - объединенные энергетические системы; уровню одного района - районные Э., уровню объекта, не связанного с другими системами, - автономные Э. (например, предприятия, корабля, самолета). В Э. в качестве составляющих ее подсистем входят: электроэнергетические системы (состоящие из электрических систем и сетей теплоснабжения ) , системы нефте- и газоснабжения, системы угольной промышленности, развивающиеся быстрыми, опережающими темпами системы ядерной энергетики . Объединение отдельных энергоснабжающих систем в единую систему, иногда также называемую межотраслевым топливно-энергетическим комплексом, связано прежде всего с взаимозаменяемостью различных видов энергии и энергоресурсов.

Значение топливно-энергетического комплекса для хозяйства страны заключается главным образом в том, что на его основе, в зависимости от его состояния, формируются основные хозяйственные пропорции страны; на его развитие передовые в промышленном отношении страны затрачивают около 30% всех капиталовложений, причем в этом комплексе оказывается занято 15-20% всех трудящихся. Развитие и функционирование Э тесно связаны с созданием новой экономичной энергетической техники, с влиянием энергетики на социальные и политические процессы как внутри страны, так и в международных отношениях, на размещение промышленности и населения по стране, с влиянием энергетики на окружающую среду.

Рассматривая Э. с точки зрения обеспечения хозяйства страны всеми видами энергии, иногда вводят весьма близкое к понятию Э. понятие 'энергетическое хозяйство', под которым понимают комплекс взаимосвязанных подсистем, содержащих энергетические объекты и объединенных для обеспечения потребителей всеми видами энергии. В некотором смысле термин 'энергетическое хозяйство' может считаться адекватным термину 'топливно-энергетический комплекс'.

В Э. должен существовать энергетический баланс , который является статической характеристикой непрерывно развивающегося энергетического хозяйства, основные элементы и связи которого составляют Э.

Основная специфика свойств Э. проявляется в следующем:

1) совокупность больших систем энергетики существует как единое материальное целое, причем целостность их обусловлена внутренними связями и взаимозаменяемостью продукции, подсистем и отдельных элементов;

2) универсальность и большая хозяйственная значимость производимой Э. продукции, особенно электроэнергии и жидкого топлива, и следовательно, многочисленность внешних связей системы;

3) активное влияние Э . на развитие и размещение производительных сил как на территории отдельного района, так и страны в целом;

4) неразрывность во времени большинства процессов производства и потребления энергии, а следовательно, органичное включение потребителей энергии и топлива в структуру системы: особая важность управления режимами систем и оперативным топливоснабжением для обеспечения бесперебойной подачи энергии потребителю;

5) невозможность изолированного выбора производительности и параметров отдельных элементов и связей вне их предполагаемого использования в системе; отсюда особая важность перспективного проектирования больших систем энергетики как единого целого;

6) сложность структуры Э., обусловленная тем, что Э. формируются как единые системы страны и даже группы смежных стран.

Характерная особенность Э. заключается в том, что их физико-технические и экономические свойства тесно связаны между собой; например, усовершенствование энергетического оборудования в направлении повышения его кпд или улучшения его эксплуатационных характеристик приводит в конечном счете к снижению себестоимости вырабатываемой энергии.

Э. - система кибернетического типа, т. е. она имеет глубокие обратные связи; Э. - также эргатическая система (ее составным элементом является человек), т. к. процесс управления ее функционированием представляет собой совокупность определенных операций, выполняемых человеком и управляющей машиной.

Развитие энергетики как глобальной системы проявляется прежде всего в плане социальном. Разрыв в культурном и экономическом уровне разных стран в значительной мере обусловлен разницей в обеспечении их энергией, энерговооруженностью труда. Так, например, на долю населения, проживающего в развивающихся странах, приходится не более 7% мирового потребления всех видов энергии. Такое неравномерное энергетическое, а следовательно, экономическое и культурное развитие отражает противоречия мировой капиталистической системы и стимулирует экономические и политические конфликты, наиболее ярко проявившиеся в энергетическом кризисе 70-х гг. 20 в.

Управление Э. сводится к целенаправленному оптимизируемому воздействию на большую систему энергетики с помощью методов и технических средств кибернетики. Управление Э. имеет целью достижение в данном промежутке времени таких показателей ее работы, которые наиболее близко подходили бы к принятым критериям эффективности. В процессе управления достигается состояние Э., при котором управляющие воздействия, осуществляемые целенаправленно в определенной зависимости от внешних условий, обеспечивают достижение поставленной цели. Управление Э . включает: оптимизацию решении, т. е. определение наилучшего плана системы; реализацию этих решений, т. е. осуществление этого плана в конкретных условиях. Первое часто называют оптимизацией развития, а второе - оптимизацией функционирования. Эффективность управления Э. в основном обеспечивается достижением оптимальных темпов и пропорций в развитии единого топливно-энергетического комплекса и входящих в него энергетических подсистем ( рис. ); применением новой техники, которая могла бы обеспечить научно-технический прогресс в энергетике и своевременное развитие энергетической техники; наиболее рациональным (при сложившихся условиях) использованием всех материальных и трудовых ресурсов страны.

Работа Э. может быть охарактеризована степенью использования запасов энергетических ресурсов. Конечным результатом функционирования Э. является полезная энергия, т. е. та, которая после переработки, преобразования, транспортирования и хранения ресурсов поступает к потребителям и обеспечивает полезные энергетические процессы. Основными видами энергетических ресурсов являются топливные - уголь, нефть, природный газ, торф, сланцы, древесина и нетопливные - энергия воды (гидроэнергия), ядерная энергия, а также используемая частично энергия ветра, морских приливов и солнечной радиации; ресурсы подразделяются на возобновляемые (гидроэнергия, ветроэнергия, энергия приливов и солнечной радиации) и невозобновляемые (уголь, нефть, газ, сланцы).

Для соизмерения ресурсов и определения их экономичности пользуются понятием 'условное топливо'. Геологические (прогнозные) мировые запасы топлива (уголь, газ и т. д.) составляют 11 651 млрд. т, причем 54,5% их находятся в СССР. Мировые запасы топлива, доступные для извлечения, составляют 3112 млрд. т, из них 55% находятся в СССР. Гидроэнергоресурсы в пересчете на годовую выработку электроэнергии оцениваются в 7500 млрд. квт T ч (в 1,5 раза больше того количества электроэнергии, которое было выработано всеми электростанциями мира в 1970). Используемое в Э. топливо разделяется на энергетическое (для выработки электроэнергии и тепла на электростанциях, в районных и промышленных котельных) и технологическое (используемое в промышленных установках для выполнения рабочих процессов, а также в промышленных печах, и др.). Уровень использования энергоресурсов может быть оценен коэффициентом извлечения потенциальных ресурсов, который определяется как отношение используемого количества энергетических ресурсов к их потенциальным запасам. Применяется также коэффициент полезного использования в энергопотребляющих процессах по отраслям производства и по хозяйству страны в целом; этот коэффициент представляет собой произведение кпд отдельных процессов - от добычи энергоресурсов до их использования.

Все процессы, связанные с функционированием Э., прогнозированием и планированием ее работы, являются предметом изучения общей теории Э. (энергетики). Большие системы энергетики и их теория стали развиваться в основном во 2-й половине 20 в. Начало 60-х гг. характеризовалось качественно новым направлением развития советской энергетики, заключавшимся в концентрации энергетических мощностей, формированием объединённых электроэнергетических систем, созданием электроэнергетической системы 'Мир' , объединившей Единую электроэнергетическую систему Европейской части Советского Союза с Э. стран - членов СЭВ. При этом учитывается, что масштабы и темпы производства энергоресурсов в конечном итоге определяют уровень энерговооружённости труда во всех отраслях народного хозяйства, причём электроэнергетические системы потребляют до 80% всего топлива, добываемого в стране (из них 30% - на выработку электроэнергии, 50% - на выработку тепла); остальное топливо идёт на удовлетворение технологических нужд производства. Тепловая потребность СССР примерно на 30% обеспечивается теплоэлектроцентралями, оставшиеся 70% дефицита тепла - промышленными и коммунальными котельными, а также нагревателями и печами индивидуального пользования. При этом тепло распределяется следующим образом: промышленность и транспорт - 43%, жилищно-коммунальное хозяйство городов - 33%, с.-х. производство и бытовое потребление - 24%.

Большое значение при определении эффективности использования топлива имеют условия его доставки. В СССР себестоимость транспортировки топлива на 1 км составляет: уголь (по железной дороге) - 0,1-0,2 коп. за 1 т ; мазут - 0,15-0,30 коп. за 1 т; газ (по газопроводам) - 0,15-0,70 коп. за 1000 м3 нефть (по нефтепроводам) - 0,05-0,15 коп. за 1 т. Сравнительная экономичность топлива определяет затраты по его добыче, перевозке, хранению и приготовлению к использованию.

В управлении Э. СССР заложены принципы и организационные формы, отвечающие единству хозяйственного и политического руководства, плановости ведения энергетического хозяйства, системному подходу к управлению Э., сочетанию отраслевого и территориального управления, иерархическому принципу при организации управления энергетикой, а также обязательный учёт влияния энергетики на окружающую среду. Последнее обстоятельство приобретает всё большее значение, оно требует увеличенных капиталовложений и повышенного внимания к проблеме загрязнения окружающей среды. Мероприятия, направленные на снижение неблагоприятного влияния работы электростанций на окружающую среду, предусматриваются как органическая часть любого энергетического сооружения ещё на стадии его проектирования, а не как некие дополнительные установки к уже построенному энергетическому комплексу. Это необходимо прежде всего в связи с ростом установленных мощностей энергетических объектов, превращающих ежегодно во всём мире не менее 6-7 млрд. т условного топлива в различные виды энергии. Такие масштабы 'энергетического воздействия' человека на природу становятся соизмеримы с масштабами естественных геофизических и геологических явлений, меняющих климатический облик Земли. Количество энергии, вырабатываемой на Земле, пока ещё составляет сотые доли % от того количества энергии, которое Земля получает от Солнца, но её тепловой эффект уже достаточно заметно сказывается на климате, особенно тех 'энергетически напряжённых' районов, где происходит т. н. тепловое загрязнение биосферы . Последнее обусловлено тем, что превращение энергии в энергоустановках происходит с весьма низким кпд (8-10% у подвижных и 25-30% у стационарных установок). В результате огромное количество тепла идёт на подогрев воды, почвы, воздуха. К существенно неприятным последствиям приводят ошибки, допущенные в проектировании водохранилищ ГЭС, ориентированных только на задачи гидроэнергетики . Большой вред биосфере приносят выбросы в атмосферу продуктов сгорания топлива (золы, окислов азота, двуокиси серы, сернистого ангидрида и др.). Все эти вредные экологические влияния могут быть значительно снижены (а в перспективе ликвидированы) при системном подходе к проектированию энергоустановок, когда Э. рассматривается как система, взаимодействующая с другими системами жизнедеятельности человека и биосферой. К экологическим проблемам могут быть также отнесены трудности развития энергетики, обусловленные ростом площадей и объёмов, требующихся под энергетические сооружения. Однако и здесь интенсивная работа над конструкцией инженерных сооружений и эксплуатационными характеристиками энергетического оборудования позволяет резко снизить объёмы и площади, занимаемые ими: если, например, в 1900 на 1 квт мощности электростанций требовался рабочий объём 50 м 3 , то в 50-х гг. 20 в. этот объём составлял уже около 6 м3, а к 1975 в связи с техническим усовершенствованием энергетического оборудования эта величина снизилась до десятых долей м3.

В СССР благодаря единой технической политике в области использования достижений научно-технической революции при решении народно-хозяйственных задач развитие энергетики тесно увязано с задачами охраны и преобразования природы. Наряду с рациональным использованием природных ресурсов принимаются необходимые меры для того, чтобы научно-технический прогресс сочетался с бережным отношением к природным богатствам страны, не служил источником опасного загрязнения воздуха и воды, истощения земли. Развитие энергетики, так же как и других отраслей промышленности, требует изменения характера общественного производства, правильная организация которого должна предусматривать технологические процессы полной переработки сырья в полезные продукты, без отходов или почти без отходов.

Лит.: Электрические системы. Кибернетика электрических систем, М., 1974; Мелентьев Л. А., Оптимизация развития и управления больших систем энергетики, М., 1975; Чернухин А. А., Флаксерман К. Н., Экономика энергетики СССР, 2 изд., М., 1975; Веников В. А., Энергетика и биосфера, в сборнике: Методологические аспекты исследования биосферы, М., 1975.

В. А. Веников.

Большая советская энциклопедия, БСЭ.