микроскопия, совокупность методов исследования с помощью электронных микроскопов (МЭ) микроструктуры тел (вплоть до атомно-молекулярного уровня), их локального состава и локализованных на поверхностях или в микрообъёмах тел электрических и магнитных полей (микрополей). Наряду с этим прикладным значением Э. м. является самостоятельным научным направлением, предмет и цели которого включают: усовершенствование и разработку новых МЭ и других корпускулярных микроскопов (например, протонного микроскопа) и приставок к ним; разработку методик препарирования образцов, исследуемых в МЭ; изучение механизмов формирования электроннооптических изображений; разработку способов анализа разнообразной информации (не только изображений), получаемой с помощью МЭ.
Объекты исследований в Э. м. - большей частью твёрдые тела. В просвечивающих МЭ (ПЭМ), в которых электроны с энергиями от 1 кэв до 5 Мэв проходят сквозь объект, изучаются образцы в виде тонких плёнок, фольги ( рис. 1 ), срезов и т. п. толщиной от 1 нм до 10 мкм (от 10 до 105 ). Поверхностную и приповерхностную структуру массивных тел с толщиной существенно больше 1 мкм исследуют с помощью непросвечивающих МЭ: растровых (РЭМ) ( рис. 2 ), зеркальных, ионных проекторов и электронных проекторов .
Можно изучать порошки, микрокристаллы, частицы аэрозолей и т. д., нанесённые на подложку: тонкую плёнку для исследования в ПЭМ или массивную подложку для исследования в РЭМ. Поверхностная геометрическая структура массивных тел изучается и методом реплик : с поверхности такого тела снимается отпечаток в виде тонкой плёнки углерода, коллодия, формвара и др., повторяющий рельеф поверхности и рассматриваемый в ПЭМ. Обычно предварительно на реплику в вакууме напыляется под скользящим (малым к поверхности) углом слой сильно рассеивающего электроны тяжёлого металла (например, Pt), оттеняющего выступы и впадины геометрического рельефа. При исследовании методом так называемого декорирования не только геометрической структуры поверхностей, но и микрополей, обусловленных наличием дислокаций ( рис. 3 ), скоплений точечных дефектов (см. Дефекты в кристаллах ), ступеней роста кристаллических граней, доменной структуры (см. Домены ) и т. д., на поверхность образца вначале напыляется очень тонкий слой декорирующих частиц (атомы Au, Pt и др., молекулы полупроводников или диэлектриков), осаждающихся преимущественно на участках сосредоточения микрополей, а затем снимается реплика с включениями декорирующих частиц.
Специальные газовые микрокамеры - приставки к ПЭМ или РЭМ - позволяют изучать жидкие и газообразные объекты, неустойчивые к воздействию высокого вакуума, в том числе влажные биологические препараты. Радиационное воздействие облучающего электронного пучка довольно велико, поэтому при исследовании биологических, полупроводниковых, полимерных и т. п. объектов необходимо тщательно выбирать режим работы МЭ, обеспечивающий минимальную дозу облучения.
Наряду с исследованием статическим, не меняющихся во времени объектов Э. м. даёт возможность изучать различные процессы в динамике их развития: рост плёнок, деформацию кристаллов под действием переменной нагрузки, изменение структуры под влиянием электронного или ионного облучения и т. д. (исследования 'in situ'). Вследствие малой инерционности электрона можно исследовать периодические во времени процессы, например перемагничивание тонких магнитных плёнок, переполяризацию сегнетоэлектриков , распространение ультразвуковых волн и т. д., методами стробоскопической Э. м.: электронный пучок 'освещает' образец импульсами, синхронными с подачей импульсного напряжения на образец, что обеспечивает фиксацию на экране прибора определенной фазы процесса точно так же, как это происходит в светооптических стробоскопических приборах ( рис. 4 ). Предельное временное разрешение при этом может, в принципе, составлять около 10-15 сек для ПЭМ (практически реализовано разрешение ~ 10-10 сек для ПЭМ и РЭМ).
Для интерпретации изображений аморфных и других тел (размеры частиц которых меньше разрешаемого в МЭ расстояния), рассеивающих электроны диффузно, используются простейшие методы амплитудной Э. м. Например, в ПЭМ контраст изображения, т. е. перепад яркостей изображения соседних участков объекта, в первом приближении пропорционален перепаду толщин этих участков. Для расчёта контраста изображений кристаллических тел ( рис. 5 ), имеющих регулярные структуры (при рассеянии частиц на таких телах происходит дифракция частиц ) , и решения обратной задачи - расчёта структуры объекта по наблюдаемому изображению - привлекаются методы фазовой Э. м.: решается задача о дифракции электронной волны (см. Волны де Бройля ) на кристаллической решетке. При этом дополнительно учитываются неупругие взаимодействия электронов с объектом: рассеяние на плазмах, фононах и т. п. В ПЭМ и растровых ПЭМ (ПРЭМ) высокого разрешения получают изображения отдельных молекул или атомов тяжелых элементов; пользуясь методами фазовой Э. м., восстанавливают по изображениям трехмерную структуру кристаллов и биологических макромолекул. Для решения подобных задач применяют, в частности, методы голографии, а расчеты производят на ЭВМ.
Разновидность фазовой Э. м. - интерференционная Э. м., аналогичная оптической интерферометрии (см. Интерферометр ): электронный пучок расщепляется с помощью электронных призм, и в одном из плеч интерферометра устанавливается образец, изменяющий фазу проходящей сквозь него электронной волн. Этим методом можно измерить, например, внутренний электрический потенциал образца.
С помощью лоренцовой Э. м., в которой изучают явления, обусловленные Лоренца силой , исследуют внутренние магнитные и электрические поля или внешние поля рассеяния, например поля магнитных доменов в тонких пленках ( рис. 6 ), сегнетоэлектрических доменов (см. Домены ), поля головок для магнитной записи информации и т. п.
Состав объектов исследуется методами микродифракции, т. е. электронографии локальных участков объекта, рентгеновского и катодолюминисцентного спектрального микроанализа (см Катодолюминесценция , Спектральный анализ рентгеновский ): регистрируются характеристические рентгеновские спектры или катодолюминисцентное излучение, возникающее при бомбардировке образца сфокусированным пучком электронов (диаметр электронного 'зонда' менее 1 мкм ). Кроме того, изучаются энергетические спектры вторичных электронов, выбитых первичным электронным пучком с поверхности или из объема образца.
Интенсивно разрабатываются методы количественной Э. м. - точное измерение различных параметров образца или исследуемого процесса, например измерение локальных электрических потенциалов ( рис. 7 ), магнитных полей ( рис. 8 ), микрогеометрии поверхностного рельефа и т. д. МЭ используются и в технологических целях (например, для изготовления микросхем методом фотолитографии ).
Лит.: Хокс П., Электронная оптика и электронная микроскопия, пер. с англ., М., 1974; Стоянова И. Г., Анаскин И. Ф., Физические основы методов просвечивающей электронной микроскопии, М., 1972; Утевский Л. М., Дифракционная электронная микроскопия в металловедении, М., 1973; Электронная микроскопия тонких кристаллов, пер. с англ., М., 1968; Спивак Г. В., Сапарин Г. В., Быков М. В., Растровая электронная микроскопия, 'Успехи физических наук', 1969, т. 99, в. 4; Вайнштейн Б. К., Восстановление пространственной структуры биологических объектов по электронным микрофотографиям, 'Изв. АН СССР. Сер. физическая', 1972, т. 36, | 9; Quantitftive scanning electron microscopy, L. - N. Y. - S. F., 1974.
А. Е. Лукьянов.
Применение электронной микроскопии в биологии позволило изучить сверхтонкую структуру клетки внеклеточных компонентов тканей. На основании результатов, полученных с помощью МЭ (максимальное разрешение которых для биологических объектов 12 - 6А, а увеличения - до 800 - 1200 тыс.), начиная с 40-х гг. было описано тонкое строение мембран, митохондрий, рибосом и других клеточных, а также внеклеточных структур, выявлены некоторые макромолекулы, например ДНК. Растровая (сканирующая) Э. м. дает возможность изучать тонкое строение поверхности клеток и тканевых структур не только фиксированных объектов, но и живых животных с твердым хитиновым покровом, например ряда членистоногих. Техника приготовления биологических препаратов для Э. м. включает процедуры, сохраняющие ткань в условиях глубокого вакуума под пучком электронов и реализующие высокое разрешение МЭ. Обычно объекты фиксируют химическими реагентами (альдегидами, четырехокисью осмия или др.), обезвоживают (спиртом, ацетоном), пропитывают эпоксидными смолами и режут на специальных микротомах на ультратонкие срезы (толщиной 100 - 600 ). Для повышения контраста изображения клеток их обрабатывают 'электронными красителями', сильно рассеивающими электроны (уранилацетатом, гидроокисью свинца и др.). Чтобы уменьшить повреждающее действие фиксатора на ткань, ее можно заморозить, вытесняя затем воду ацетоном или спиртом при низкой температуре. Иногда применяют методы, исключающие действие фиксатора на клетки, например лиофилизацию : ткань быстро охлаждают до - 150 или - 196|C и обезвоживают в высоком вакууме при низкой температуре. Перспективным оказался метод замораживания с травлением, основанный на получении платино-углеродной реплики со скола замороженного объекта. Благодаря этому методу внесены существенные изменения в представления о структуре клеточных мембран. Для изучения структуры биологических макромолекул и отдельных клеточных органоидов используют негативное контрастирование образцов. В этом случае исследуемые объекты выявляются в виде электроннопрозрачных элементов на темном фоне. Полученные в МЭ изображения молекул можно анализировать,применяя методы, основанные на дифракции света . Использование высоковольтной Э. м. (до 3 Мв ) позволяет получить сведения о 3-мерной структуре клеток. При подготовке к исследованию живых членистоногих их обездвиживают с помощью эфирного или хлороформного наркоза в дозах, не вызывающих последующей гибели, и помещают в вакуумную камеру МЭ. В современной Э. м. широко применяют методы цитохимии, включая авторадиографию . Применение Э. м. в биологии существенно изменило и углубило прежние представления о тонком строении клетки.
Лит.: Киселев Н. А., Электронная микроскопия биологических макромолекул, М., 1965; Электронно-микроскопическая анатомия, пер. с англ., М., 1967; Балашов Ю. С., Миккау Н. Е., Изучение живых животных в растровом электронном микроскопе, 'Природа', 1977, | 1; Tribe М. A., Eraut M. R., Snook R. K., Basic biology course, book 2 - Electron microscopy and cellstructure, Camb., 1975; Electron microscopy of enzymes. Principles and methods, v. 1-2, N. Y., 1973-74.
Н. А. Старосветская, Я. Ю. Комиссарчик.