Значение слова ФЕРРИМАГНЕТИЗМ в Большой советской энциклопедии, БСЭ

ФЕРРИМАГНЕТИЗМ

магнитное состояние вещества, при котором элементарные магнитные моменты , ионов, входящих в состав вещества ( ферримагнетика ) , образуют две или большее число подсистем v магнитных подрешёток. Каждая из подрешёток содержит ионы одного сорта с одинаково ориентированными магнитными моментами. Магнитные моменты ионов разных подрешёток направлены навстречу друг другу или, в более общем случае, образуют сложную пространственную конфигурацию (например, треугольную). Часто число ионов в одной подрешётке в кратное число раз больше, чем в другой. Простейшая модель ферримагнитной упорядоченности показана на рис. 1 . Самопроизвольная намагниченность J вещества в ферримагнитном состоянии равна векторной сумме намагниченностей всех подрешёток. Ф. можно рассматривать как наиболее общий случай магнитного упорядоченного состояния. С этой точки зрения ферромагнетизм есть частный случай Ф., когда в веществе имеется только одна подрешётка.

Антиферромагнетизм есть частный случай Ф., когда все под решётки состоят из одинаковых магнитных ионов и J 0 . Термин 'ферримагнетизм' был введён Л. Неелем (1948) и происходит от слова феррит v названия большого класса окислов переходных элементов, в которых это явление было впервые обнаружено.

Необходимым условием существования Ф. является наличие в веществе положительных ионов (катионов) элементов с незаполненной ( d- или f -) электронной оболочкой, обладающих собственным магнитным моментом. Между ионами различных подрешёток должно существовать отрицательное обменное взаимодействие , стремящееся установить их магнитные моменты антипараллельно. Как правило, это взаимодействие является косвенным обменным взаимодействием, т. е. осуществляется путём обмена электронами через промежуточный немагнитный анион (например, ион кислорода, рис. 2 ).

При высоких температурах, когда энергия теплового движения много больше обменной энергии, вещество обладает парамагнитными свойствами (см. Парамагнетизм ) . Температурная зависимость магнитной восприимчивости парамагнетиков, в которых при низких температурах возникает Ф., обладает характерными особенностями, показанными на рис. 3 . Обратная восприимчивость (1/c) таких веществ следует Кюри v Вейса закону с отрицательной константой Q D при высоких температурах, а при понижении температуры круто спадает, стремясь к нулю при Т - Qс. В Кюри точке Qс , когда энергия обменного взаимодействия становится равной энергии теплового движения в веществе, возникает ферримагнитная упорядоченность. В большинстве случаев переход в упорядоченное состояние является фазовым переходом 2-го рода и сопровождается характерными аномалиями теплоёмкости, линейного расширения, гальваномагнитных и др. свойств.

Возникающая ферримагнитная упорядоченность моментов описывается определённой магнитной структурой , т. е. разбиением кристалла на магнитные подрешётки, величиной и направлением векторов их намагниченностей. Магнитная структура может быть определена методами дифракции нейтронов (см. Дифракция частиц ) . Образование той или иной магнитной структуры зависит от кристаллической структуры вещества и соотношения величин обменных взаимодействий между различными магнитными ионами. Обменное взаимодействие определяет только взаимную ориентацию намагниченностей подрешёток друг относительно друга. Другой их параметр v ориентация относительно осей кристалла v определяется энергией магнитной анизотропии , которая на несколько порядков меньше обменной энергии.

Существование в ферримагнетике нескольких различных подрешёток приводит к более сложной температурной зависимости спонтанной намагниченности J, чем в обычном ферромагнетике. Это связано с тем, что температурные зависимости намагниченности каждой из подрешёток могут отличаться друг от друга ( рис. 4 ). В результате спонтанная намагниченность, являющаяся в простейшем случае разностью намагниченностей подрешёток, с ростом температуры от абсолютного нуля может: 1) убывать монотонно ( рис. 4 , а), как в обычном ферромагнетике; 2) возрастать при низких температурах и в дальнейшем проходить через максимум ( рис. 4 , б); 3) обращаться в нуль при некоторой фиксированной температуре Qк. температуру Qкназывают точкой компенсации, при Т > Qкили Т < Qк спонтанная намагниченность отлична от нуля.

Впервые теоретическое описание свойств ферримагнетиков было дано Неелем (1948), который показал, что основные особенности поведения ферримагнетиков могут быть очень хорошо объяснены в рамках теории молекулярного поля. Ферримагнетики в не очень сильных магнитных полях (много меньше обменных) ведут себя так же, как ферромагнетики , т.к. такие магнитные поля не изменяют магнитной структуры. В отсутствии поля они разбиваются на домены , имеют характерную кривую намагничивания с насыщением и гистерезисом . В них наблюдается магнитострикция . В ферримагнетиках с неколлинеарными магнитными структурами при доступных значениях магнитного поля насыщения обычно не наблюдается. Особыми магнитными свойствами ферримагнетики обладают вблизи точки компенсации. Здесь даже слабые магнитные поля вызывают взаимный скос и опрокидывание подрешёток. Вдали от точки компенсации такие изменения магнитной структуры происходят в сильных (порядка обменных) магнитных полях. При определенных условиях в ферримагнетиках наблюдается резонансное поглощение электромагнитной энергии ( ферримагнитный резонанс ) . Изучение Ф. развивалось очень бурно и далеко продвинуло физику магнитных явлений. Удалось создать теорию ферримагнетиков-диэлектриков (большинство ферримагнетиков является диэлектриками); многие магнитные диэлектрики стали широко применяться в радиотехнике, СВЧ-технике, вычислительной технике.

Лит.: Смит Я., Вейн Х., Ферриты, пер. с англ., М., 1962; Редкоземельные ферромагнетики и антиферромагнетцки, М., 1965; Гуревич А. Г., Магнитный резонанс в ферритах и антиферромагнетиках, М., 1973; Смоленский Г. А., Леманов В, В., Ферриты и их техническое применение, Л., 1975; см. также лит. при статьях Антиферромагнетизм , Ферромагнетизм .

А. С. Боровик-Романов.

Большая советская энциклопедия, БСЭ.