(Riemann) Георг Фридрих Бернхард (17.9.1826, Брезеленц, Нижняя Саксония, - 20.7.1866, Селаска, близ Интры, Италия), немецкий математик. В 1846 поступил в Гёттингенский университет: слушал лекции К. Гаусса , многие идеи которого были им развиты позже. В 1847-49 слушал лекции К. Якоба по механике и П. Дирихле по теории чисел в Берлинском университете; в 1849 вернулся в Гёттинген, где сблизился с сотрудником Гаусса физиком В. Вебером , который пробудил в нём глубокий интерес к вопросам математического естествознания.
В 1851 защитил докторскую диссертацию 'Основы общей теории функций одной комплексной переменной'. С 1854 приват-доцент, с 1857 профессор Гёттингенского университета. Лекции Р. легли в основу ряда курсов (математической физики, теории тяготения, электричества и магнетизма, эллиптических функций), изданных после смерти Р. его учениками. Умер от туберкулёза.
Работы Р. оказали большое влияние на развитие математики 2-й половины 19 в. и в 20 в. В докторской диссертации Р. положил начало геометрическому направлению теории аналитических функций ; им введены так называемые римановы поверхности, важные при исследованиях многозначных функций, разработана теория конформных отображений и даны в связи с этим основные идеи топологии, изучены условия существования аналитических функций внутри областей различного вида (так называемый принцип Дирихле) и т.д. Разработанные Р. методы получили широкое применение в его дальнейших трудах по теории алгебраических функций и интегралов, по аналитической теории дифференциальных уравнений (в частности, уравнений, определяющих гипергеометрические функции), по аналитической теории чисел (например, Р. указана связь распределения простых чисел со свойствами дзета-функции , в частности с распределением её нулей в комплексной области - так называемая гипотеза Римана, справедливость которой ещё не доказана) и т.д.
В ряде работ Р. исследовал разложимость функций в тригонометрические ряды и в связи с этим определил необходимые и достаточные условия интегрируемости в смысле Р. (см. Интеграл ) , что имело значение для теории множеств и функций действительного переменного. Р. также предложил методы интегрирования дифференциальных уравнений с частными производными (например, с помощью так называемых инвариантов Римана и функции Римана).
В знаменитой лекции 1854 'О гипотезах, лежащих в основании геометрии' (1867) Р. дал общую идею математического пространства (по его словам, 'многообразия'), включая функциональные и топологические пространства. Он рассматривал здесь геометрию в широком смысле как учение о непрерывных n-мерных многообразиях, т. е. совокупностях любых однородных объектов и, обобщая результаты Гаусса по внутренней геометрии поверхности, дал общее понятие линейного элемента (дифференциала расстояния между точками многообразия, см. Риманова геометрия ) , определив тем самым то, что называется финслеровыми пространствами. Более подробно Р. рассмотрел так называемые римановы пространства , обобщающие пространства геометрий Евклида, Лобачевского и Римана (см. Неевклидовы геометрии ) , характеризующиеся специальным видом линейного элемента, и развил учение об их кривизне. Обсуждая применение своих идей к физическому пространству, Р. поставил вопрос о 'причинах метрических свойств' его, как бы предваряя то, что было сделано в общей теории относительности (см. Тяготение ) .
Предложенные Р. идеи и методы раскрыли новые пути в развитии математики и нашли применение в механике и физике.
Соч.: Gesammelte mathematische Werke und wissenschaftlicher Nachlass, 2 Aufl., N. Y., 1953; в рус. пер. - Сочинения, М. - Л., 1948.
Лит.: Клейн Ф., Лекции о развитии математики в XIX столетии, пер. с нем., ч. 1, М. - Л., 1937.