поправки, в квантовой электродинамике поправки к значениям некоторых физических величин и сечениям различных процессов (вычисленным по формулам релятивистской квантовой механики), обусловленные взаимодействием заряженной частицы с собственным электромагнитным полем. Возникновение Р. п. можно рассматривать как результат испускания и поглощения частицами виртуальных фотонов и электрон-позитронных пар. Р. п. рассчитывают по методу теории возмущений, представляя их в виде ряда по степеням постоянной тонкой структуры a e 2 lc '1/137 (где е - элементарный электрический заряд, - постоянная Планка, с - скорость света в вакууме); поправки 1-го порядка пропорциональны a, 2-го - a2 и т.д. При вычислении Р. п. исходят из того, что Р. п. к массе и заряду частицы сами по себе не имеют физического смысла; физический смысл имеет суммарная величина массы или заряда после включения Р. п., и для этих величин в расчётах используют их экспериментальные значения (т. н. перенормировка массы и заряда).
Наибольший интерес представляют Р. п. к магнитному моменту электрона и мюона, радиационное смещение атомных уровней энергии ( сдвиг уровней ), Р. п. к сечениям рассеяния электрона электроном или атомным ядром и др. (см. Квантовая теория поля ). Результаты расчётов Р. п. вплоть до величин 3-го порядка блестяще согласуются с экспериментальными данными и свидетельствуют о справедливости квантовой электродинамики по крайней мере на расстояниях, больших 5×10 - 15 см. Р. п. растут с ростом энергии, и эффективным параметром разложения при высоких энергиях является aln ( E / m ), а в некоторых случаях aln ( E / m ) ln ( E /D E ) , где Е - энергия частицы в системе центра инерции, m - её масса, D Е - экспериментальное разрешение прибора.
Р. п. могут быть в ряде случаев подсчитаны не только для электродинамических процессов, но и для процессов, вызванных др. взаимодействиями. Однако для процессов, обусловленных сильным взаимодействием , вычисление Р. п. обычно нельзя строго провести из-за отсутствия законченной теории сильных взаимодействий.
При вычислении Р. п. к электродинамическим величинам с точностью выше 3-го порядка существенный вклад получается от виртуального рождения сильно взаимодействующих частиц ( адронов ) и от учёта эффектов слабого взаимодействия . Отсутствие последовательной теории слабого взаимодействия и недостаток экспериментальных данных по процессам рождения адронов за счёт электромагнитного взаимодействия препятствуют вычислению этих эффектов.
Лит.: Ахиезер А. И., Берестецкий В. Б., Квантовая электродинамика, 3 изд., М., 1969, гл. 5 .
Б. Л. Иоффе.