Значение МАТРИЦА РАССЕЯНИЯ в Большой советской энциклопедии, БСЭ

Что такое МАТРИЦА РАССЕЯНИЯ

рассеяния , S -maтрица, совокупность величин ( матрица ), описывающая процесс перехода квантовомеханических систем из одних состояний в другие при их взаимодействии (рассеянии). Понятие 'М. р.' введено В. Гейзенбергом в 1943.

При рассеянии система переходит из одного квантового состояния, начального (его можно отнести к моменту времени t -¥) в другое, конечное ( t +¥). Если обозначить набор квантовых чисел , характеризующих начальное состояние, через i , а конечное - через f , то амплитуда рассеяния (квадрат модуля которой определяет вероятность данного рассеяния) может быть записана как Sfi . Совокупность амплитуд рассеяния образует таблицу с двумя входами ( i - номер строки, f - номер столбца), которая и называется М. р. S . Каждая амплитуда является элементом этой матрицы (матричным элементом). Наборы квантовых чисел i , f могут содержать как непрерывные величины (энергию, угол рассеяния и другие), так и дискретные (орбитальное квантовое число, спин , изотопический спин , массу и т. д.). В простейшем случае системы двух бесспиновых частиц в нерелятивистской квантовой механике состояние определяется относительным импульсом частиц р ; тогда амплитуда рассеяния представляет собой функцию двух переменных - энергии Е и угла рассеяния J

Sfi F ( E , J).

В общем случае М. р. содержит элементы, отвечающие как упругому рассеянию, так и процессам превращения и рождения частиц. Квадрат модуля матричного элемента - Sfi -2 определяет вероятность соответствующего процесса (или его эффективное поперечное сечение).

Нахождение М. р. - основная задача квантовой механики и квантовой теории поля. М. р. содержит всю информацию о поведении системы, если известны не только численные значения, но и аналитические свойства (см. Аналитические функции ) её элементов; в частности, её полюсы (см. Особая точка ) определяют связанные состояния системы (а следовательно, дискретные уровни энергии). Из основных принципов квантовой теории следует важнейшее свойство М. р. - её унитарность. Оно выражается в виде соотношения SS+ 1 [ S+ - матрица, эрмитово сопряжённая S , то есть ( S+ ) fi S*if , где знак* означает комплексное сопряжение] или

и отражает тот факт, что сумма вероятностей рассеяния по всем возможным каналам реакции должна равняться единице. Соотношение унитарности позволяет устанавливать важные соотношения между различными процессами, а в некоторых случаях даже полностью решить задачу. В релятивистской квантовой механике существует направление, в котором М. р. считается первичной динамической величиной; требования унитарности и аналитичности М. р. должны служить при этом основой построения полной системы уравнений, определяющей матрицу S .

В. Б. Берестецкий.

Большая советская энциклопедия, БСЭ.