Значение КОСМИЧЕСКИЙ ЛЕТАТЕЛЬНЫЙ АППАРАТ в Большой советской энциклопедии, БСЭ

КОСМИЧЕСКИЙ ЛЕТАТЕЛЬНЫЙ АППАРАТ

летательный аппарат (КЛА), аппарат, предназначенный для полёта в космос или в космосе, например ракеты-носители (космические ракеты), искусственные спутники Земли (ИСЗ) и др. небесных тел. Наименование КЛА - общее, включает различные виды таких аппаратов, в том числе использующие и нереактивный принцип движения (например, солнечный парус и др.). Ракеты-носители (космические ракеты) являются средством достижения необходимой скорости для осуществления космического полёта КЛА, которые можно разделить на 2 основные группы: а) околоземные орбитальные КЛА, движущиеся по геоцентрическим орбитам, не выходя за пределы сферы действия Земли (ИСЗ); б) межпланетные КЛА, которые в полёте выходят за пределы сферы действия Земли и входят в сферу действия Солнца, планет или их естественных спутников. При этом различают автоматические КЛА (автоматические ИСЗ, искусственные спутники Луны - ИСЛ, Марса - ИСМ, Солнца - ИСС и т. п., автоматические межпланетные станции - АМС) и пилотируемые (космические корабли-спутники, обитаемые орбитальные станции, межпланетные космические корабли). Большая часть указанных типов КЛА уже создана; ведётся разработка межпланетных кораблей для полёта и высадки на др. планеты, транспортных космических кораблей многократного использования и др.

Полёт КЛА делится на следующие участки: выведения - КЛА сообщается необходимая космическая скорость в заданном направлении; орбитальный, на котором движение КЛА происходит в основном по инерции, по законам небесной механики; участок посадки. В ряде случаев КЛА снабжаются ракетными двигателями, позволяющими на орбитальном участке изменять (корректировать) траекторию движения или тормозить КЛА при посадке. Для современных КЛА, использующих химические ракетные двигатели, протяжённость участков полёта с работающими двигателями (выведение, коррекция, торможение) значительно меньше, чем участков орбитального полёта.

Ракета - единственное доступное средство для полётов в космическое пространство. Максимальная скорость ракеты зависит от скорости истечения реактивной струи, определяемой видом топлива и совершенством двигателя, и отношения массы топлива к общей (начальной) массе ракеты, т. е. от совершенства конструкции ракеты, а также от массы полезного груза. Скорость истечения реактивной струи из двигателя при современных химических топливах составляет 3000-4500 м/сек; при этом одноступенчатая ракета рациональной конструкции практически не способна развить скорость, необходимую для космического полёта (около 8 км/сек ) . Поэтому распространены составные ракеты , у которых в полёте, по мере расходования топлива, отделяются части конструкции (топливные баки, двигатели). Основные ракеты, применяемые в космонавтике (ракеты-носители), имеют от 2 до 4 ступеней. Конструктивные схемы этих ракет весьма разнообразны; их отличительная особенность - малая относительная масса конструкции (вместе с двигательной установкой обычно не превышает 10-12% от массы топлива). Создание такой конструкции с высокой жёсткостью и прочностью - сложная техническая задача. Ракета работает в очень напряжённых режимах статических и динамических нагрузок, поэтому необходимо максимальное использование прочности материалов, конструктивное совершенство отдельных узлов при значительных размерах конструкции в целом. В состав оборудования ракеты входит ряд систем и агрегатов для управления в полёте, разделения ступеней, наддува топливных баков, регулирования подачи топлива к двигателям и др. Двигательные установки космических ракет, как правило, состоят из нескольких двигателей, работа которых синхронизируется.

Полёт ракеты по заданной траектории, стабилизацию её относительно центра масс, управление двигателями (регулирование тяги, включение и выключение), выдачу команд на разделение ступеней обеспечивает система управления. Она представляет собой сложный комплекс приборов и агрегатов (гироскопических, электронных, электромеханических и др.) и в ряде случаев включает бортовую электронную вычислительную машину. Космические ракеты - одно из крупнейших достижений современной науки и техники; создание ракетно-космических комплексов требует высокого уровня развития многих отраслей науки и техники - металлургии, химии, радиоэлектроники, вычислительной техники и многого др.

Отличительная особенность большинства КЛА - способность к длительному самостоятельному функционированию в условиях космического пространства. Во многих отношениях (законы движения, тепловой режим и др.) такие КЛА подобны самостоятельным небесным телам, на которых созданы необходимые условия для работы аппаратуры и существования людей. На КЛА имеются системы регулирования теплового режима, энергопитания бортовой аппаратуры, управления движением в полёте, радиосвязи с Землёй. В КЛА с экипажем в герметичной кабине обеспечиваются необходимые условия для жизни и работы человека - осуществляется регенерация атмосферы с регулированием её температуры и влажности, снабжение водой и пищей. Решение проблем жизнеобеспечения экипажа особенно сложно для обитаемых орбитальных станций и межпланетных кораблей. Многие КЛА имеют системы для ориентации в пространстве. При ориентации КЛА обычно выполняются определённые функции (научное наблюдение объекта, радиосвязь, освещение солнечных батарей и др.). В зависимости от задачи точность ориентации может составлять от 10-15| до нескольких угловых секунд. Изменение траектории (её коррекция, маневрирование КЛЛ, торможение перед спуском на Землю или др. планету и т. п.) необходимо для реализации любой достаточно сложной схемы космического полёта. Поэтому все пилотируемые КЛА и большинство автоматических КЛА снабжены системой управления движением и бортовыми ракетными двигателями. Специфической задачей является поддержание на борту КЛА требуемой температуры. В отличие от наземных условий, в космическом пространстве между отдельными телами осуществляется только лучистый теплообмен; на КЛА воздействуют внешние тепловые потоки - излучение солнца, земли или др. близкой планеты, обычно переменные (заход КЛА в тень Земли, полёт на различных удалениях от Солнца). В свою очередь, КЛА должен излучать в окружающее пространство определённое количество тепла (зависящее от поглощения внешних тепловых потоков и внутреннего тепловыделения). КЛА обычно имеют радиационную поверхность (часть его оболочки или отдельный радиатор-излучатель), которая за счёт специальной обработки обладает большим собственным излучением тепла при малом поглощении его извне. Изменяя теплоподвод к радиационной поверхности и её собственное излучение (например, с помощью специальных жалюзи), регулируют тепловой баланс КЛА, т. е. его температуру. Для тепловых процессов на борту КЛА характерно отсутствие конвективного теплообмена в связи с состоянием невесомости в полёте; поэтому одна из функций системы терморегулирования - организация внутреннего теплового режима. Проблема энергопитания бортовой аппаратуры КЛА решается в нескольких направлениях: а) использование солнечного излучения, преобразуемого в электроэнергию с помощью солнечных батарей, - способ энергопитания, наиболее широко применяемый на современных КЛА, - обеспечивает длительность работы аппаратуры до нескольких лет; б) установка новых источников тока с высокой энергоотдачей на единицу массы - топливных элементов, вырабатывающих электроэнергию в результате электрохимических процессов между 2 рабочими веществами, например кислородом и водородом (полученная при этом вода может использоваться в системах жизнеобеспечения пилотируемых кораблей); в) применение бортовых ядерных энергетических установок с реакторами и изотопными генераторами. Химические источники тока (аккумуляторы) применяются только на КЛА с малым временем работы аппаратуры (до 1-3 недель) или в качестве буферных батарей в системах энергопитания (например, в сочетании с солнечными батареями). Полёт автоматических и пилотируемых КЛА невозможен без радиосвязи с Землей, передачи на Землю телеметрической и телевизионной информации, приёма радиокоманд, периодических измерений траектории движения КЛА, телефонной и телеграфной связи с космонавтами. Эти функции выполняют бортовые радиосистемы и наземные командно-измерительные пункты (см. Космическая связь ). Одна из наиболее сложных проблем космических полётов - спуск КЛА на поверхность Земли и др. небесных тел, когда космическая скорость КЛА должна быть уменьшена до нуля в момент посадки. Возможны 2 способа торможения КЛА: использование тормозящей реактивной силы; с помощью аэродинамических сил возникающих при движении аппарата в атмосфере. Для реализации 1-го способа КЛА или его часть (спускаемый аппарат) должен быть снабжен тормозной ракетной двигательной установкой и большим запасом топлива поэтому спуск с ракетным торможением применяется только для посадки на небесные тела, лишённые атмосферы, например на Луну. Спуск с аэродинамическим торможением более выгоден в весовом отношении и является основным при осуществлении посадки КЛА на Землю. При спуске по баллистической траектории перегрузки достигают 8-10; спуск по планирующей траектории когда на спускаемый аппарат, кроме силы сопротивления, действует и подъемная сила, позволяет уменьшить эти перегрузки в 1,5-2 раза. На участке спуска при движении в атмосфере имеет место интенсивный аэродинамический нагрев спускаемого аппарата. Поэтому он снабжается теплозащитным покрытием, создаваемым на основе керамических или органических материалов, обладающих высокой термостойкостью, малой теплопроводностью. В конце траектории спуска, на высотах в несколько км, скорость движения снижается до 150-250 м/сек. Дальнейшее снижение скорости перед приземлением осуществляется обычно с помощью парашютной системы. На советских кораблях 'Восход' и 'Союз' применялась система мягкой посадки, позволяющая уменьшить скорость приземления практически до нуля. Конструкция КЛА отличается рядом особенностей, связанных со специфическими факторами космического пространства - глубоким вакуумом, наличием метеорных частиц, интенсивной радиации, невесомости. В вакууме изменяется характер процессов трения, возникает явление т. н. холодной сварки, что требует подбора соответствующих материалов для механизмов, герметизации отдельных узлов и др. Воздействие наиболее мелких метеорных частиц на поверхности КЛА при длительном полёте может вызвать изменение оптических характеристик иллюминаторов, некоторых приборов, радиационных поверхностей и солнечных батарей, что требует специальных покрытий, особой обработки поверхности и др. Вероятность метеорного пробоя оболочки гермоотсеков современных КЛА невелика; для больших космических кораблей и орбитальных станций, совершающих длительный полёт, должна предусматриваться противометеорная защита. Космическая радиация (потоки заряженных частиц в радиационном поясе Земли и при солнечных вспышках) может влиять на солнечные, батареи, детали из органических соединений и др. элементы КЛА, поэтому в ряде случаев на них наносят защитные покрытия. Особые меры принимаются для защиты космонавтов от всплесков космической радиации. Высокая надёжность существенна для всех видов КЛА, особенно при наличии экипажа. Она обеспечивается комплексом мероприятий на всех этапах создания и подготовки к полёту КЛА, включая повышение надежности его элементов, аппаратуры и оборудования, строгий технологический контроль на всех стадиях изготовления, тщательную отработку систем и агрегатов имитацией условий космического полёта, проведение комплексных предполётных испытаний и др. Для повышения надежности на КЛА применяют дублирование, триплирование, резервирование отдельных агрегатов и приборов, а также автоматические схемы распознавания отказов приборов, а также элементов и их замены. См. Космонавтика , Ракета-носитель , Искусственные спутники Земли , Искусственные спутники Луны , Искусственные спутники Марса , Искусственные спутники Солнца , Автоматическая межпланетная станция , Космический корабль , Орбитальная станция .

Лит.: Александров С. Г., Федоров Р. Е., Советские спутники и космические корабли, 2 изд., М., 1961; Космическая техника, пер. с англ., М., 1964; Справочник по космонавтике, М., 1966; Пилотируемые космические корабли, пер. с англ., М., 1968; Инженерный справочник по космической технике, М., 1969; Левантовский В. И., Механика космического полета в элементарном изложении, М., 1970; Космонавтика, 2 изд., М., 1970 (Маленькая энциклопедия); Освоение космического пространства в СССР. Официальные сообщения ТАСС и материалы центральной печати. 1957-1967 М., 1971.

К. Д. Бушуев.

Большая советская энциклопедия, БСЭ.