Значение ИСКРОВАЯ КАМЕРА в Большой советской энциклопедии, БСЭ

Что такое ИСКРОВАЯ КАМЕРА

камера, прибор для наблюдения и регистрации траекторий (треков) заряженных частиц. Широко используется для исследования ядерных частиц, ядерных реакций , элементарных частиц и космических лучей . В простейшем варианте И. к. представляет собой две плоскопараллельные пластины - электроды, пространство между которыми заполнено газом (чаще Не, Ne или их смесью). Площадь пластин от десятков см 2 до нескольких м 2. Одновременно с прохождением частицы или с некоторым запозданием (~ 1 мксек ) на электроды И. к. подаётся от импульсного генератора короткий (10-100 нсек ) высоковольтный импульс напряжения. В рабочем объёме И. к. создаётся сильное электрическое поле (5-20 кв / см ). Импульс подаётся по сигналу системы детекторов (сцинтилляционные детекторы, черенковские счётчики и т. п.), выделяющих исследуемое событие. Электроны, возникшие вдоль траектории частицы в процессе ионизации атомов газа, ускоряются полем, ионизуют и возбуждают атомы газа (ударная ионизация ). В результате на очень коротком пути образуются электронно-фотонные лавины, которые в зависимости от амплитуды и длительности импульса либо перерастают в видимый глазом искровой разряд , либо создают в газе локально светящиеся области небольшого объёма.

Узкозазорная И. к. (расстояние между электродами ~1 см ) обычно состоит из большого числа одинаковых искровых промежутков. Искровые разряды распространяются перпендикулярно электродам ( рис. 1 ). Цепочка искр даёт направление траектории ( рис. 2 ).

В трековой И. к. (расстояние между электродами 3-50 см ) искровой разряд точно следует в направлении траектории частицы. Электронно-фотонные лавины, развивающиеся от первичных электронов, в этом случае сливаются в узкий светящийся канал, идущий вдоль трека.

В стримерной И. к. (расстояние между электродами ~ 5-20 см ) лавины от электронов на треке развиваются независимо друг от друга и сопровождаются локальным свечением газа. При кратковременном импульсе (~10 нсек )напряжения между электродами И. к. удаётся получить достаточно яркие для фотографирования светящиеся каналы - стримеры, длиной от 3 до 10 мм ( рис. 3а, 3б ).

И. к. позволяет, помимо траектории, в ряде случаев определять ионизующую способность частиц. Помещенная в магнитное поле И. к. служит для определения импульсов частиц по кривизне их траекторий ( рис. 2 ) . И. к. могут работать при очень интенсивных потоках заряженных частиц на ускорителях, так как время их памяти (время сохранения в объёме газа электронов ионизации) может быть уменьшено до 1 мксек . С другой стороны, И. к. способны работать с большой частотой, так как их мёртвое время (время восстановления камеры после срабатывания) составляет всего несколько мсек .

Кроме фотографирования, в И. к. широко применяют другие методы съёма информации, позволяющие, в частности, передавать данные с И. к. непосредственно на электронные вычислительные машины (ЭВМ) и автоматически их обрабатывать. Например, в проволочных И. к., имеющих электроды в виде ряда тонких нитей, расположенных на расстоянии ~ 1 мм друг от друга, появление искры сопровождается разрядным током в близлежащей нити; эта информация позволяет определить координаты искры и может быть передана непосредственно на ЭВМ.

В акустических И. к. с помощью установленных вне зазора пьезокристаллов улавливают ударную волну в газе, возникающую в момент искрового пробоя. Интервал времени между появлением искры и сигналом в пьезокристалле позволяет определить расстояние искры от кристалла, т. е. координаты искры. Здесь также часто осуществляют непосредственную связь пьезодатчиков с ЭВМ.

Лит.: Искровая камера, М., 1967; Калашникова В. И., Козодаев М. С., Детекторы элементарных частиц, М., 1966 (Экспериментальные методы ядерной физики, [ч. 1]).

М. И. Дайон.

Большая советская энциклопедия, БСЭ.