Значение слова ДЕТЕКТИРОВАНИЕ в Большой советской энциклопедии, БСЭ

ДЕТЕКТИРОВАНИЕ

(от лат. detectio - открытие, обнаружение), преобразование электрических колебаний, в результате которого получаются колебания более низкой частоты или постоянный ток. Наиболее распространённый случай Д. - демодуляция - состоит в выделении низкочастотного модулирующего сигнала из модулированных высокочастотных колебаний (см. Модуляция колебаний ). Д. применяется в радиоприёмных устройствах для выделения колебаний звуковой частоты, в телевидении - сигналов изображения и т.д.

Модулированное по амплитуде колебание представляет собой в простейшем случае совокупность трёх высоких частот w, w + W и w - W, где w - высокая несущая частота, W - низкая частота модуляции. Т. к. сигнала частоты W нет в модулированном колебании, то Д. обязательно связано с преобразованием частоты. Электрические колебания подводятся к устройству (детектору), которое проводит ток только в одном направлении. При этом колебания превратятся в ряд импульсов тока одного знака. Если амплитуда детектируемых колебаний постоянна, то на выходе детектора импульсы тока имеют постоянную высоту ( рис. 1 ). Если амплитуда колебаний на входе детектора изменяется, то высота импульсов тока становится различной. Огибающая импульсов при этом повторяет закон изменения амплитуды подводимых к детектору модулированных колебаний ( рис. 2 ). Если колебания выпрямляются лишь частично, т. е. ток через детектор течёт в обоих направлениях, но электропроводность детектора различна, то Д. также происходит. Т. о., для Д. можно использовать любое устройство с различной электропроводностью в различных направлениях, например диод . Спектр частот тока, прошедшего через диод, значительно богаче спектра исходного модулированного колебания. Он содержит постоянную составляющую, колебание частоты W, а также составляющие с частотами w, 2w, Зw и т.д. Для выделения сигнала частоты W ток диода пропускается через линейный фильтр, обладающий высоким сопротивлением на частоте W и малым сопротивлением на частотах w, 2w и т.д. Простейший фильтр состоит из сопротивления R и ёмкости С , величина которых определяется условиями w RC > > 1 и W RC < < 1 (см. Электрический фильтр ). Напряжение на выходе этого фильтра имеет частоту W и амплитуду, пропорциональную глубине модуляции входного колебания высокой частоты.

Рассмотренный выше детектор с кусочно-линейной зависимостью тока от напряжения ( рис. 3 , б), называется линейным, воспроизводит практически без искажений колебание низкой частоты W, которым модулировался входной сигнал ( рис. 3 , в). Значительно большие искажения получаются при квадратичном Д., когда зависимость между током I и напряжением V выражается квадратичным законом: I I0 + AV + BV2 . Модулированный по амплитуде сигнал ( рис. 3 , а), поданный на квадратичный детектор, вызовет ток через детектор, в спектре которого содержатся частоты: W, 2W, w - W, w, w + W, 2w - W, 2w + W и т.д. Линейный фильтр легко отсеивает все частоты, начиная с третьей, однако колебание частоты 2W ослабляется фильтром слабо и является искажающей сигнал W 'помехой'. Избавиться от неё можно лишь при малой глубине модуляции, т.к. амплитуда тока частоты 2W пропорциональна квадрату глубины модуляции входного сигнала.

Один и тот же диод может работать и как квадратичный, и как линейный детектор в зависимости от величины поступающего на него сигнала. Для малого сигнала характеристика диода квадратична, для большого же сигнала характеристику можно считать 'кусочно-линейной'. Т. о., для Д. с малыми искажениями желательно подавать на детектор достаточно большой сигнал.

Для Д. используется нелинейность зависимости тока от напряжения в вакуумных и полупроводниковых диодах (диодное Д.), нелинейность характеристики участка сетка-катод вакуумного триода (сеточное Д.), нелинейность зависимости анодного тока триода от напряжения на его сетке (анодное Д.). Сам процесс Д. во всех случаях сводится к диодному Д., только при сеточном и анодном Д. он сопровождается усилением сигналов в триоде. Д. возможно и в оптическом диапазоне, где оно осуществляется с помощью фотоприёмников (фотоэлементов, фотоумножителей, фотодиодов и т.д.) или нелинейных кристаллов (см. Нелинейная оптика ).

Лит.: Стрелков С. П., Введение в теорию колебаний, 2 изд., М., 1964; Сифоров В. И., Радиоприёмные устройства, 5 изд., М., 1954, гл. 6; Гуткин Л. С., Преобразование сверхвысоких частот и детектирование, М. - Л., 1953.

В. Н. Парыгин.

Большая советская энциклопедия, БСЭ.