упругие волны с частотой от 109 до 1012-1013 гц ; высокочастотная часть спектра упругих волн. По физической природе Г. ничем не отличается от ультразвука , частоты которого простираются от 2T104 до 109 гц . Однако благодаря более высоким частотам и, следовательно, меньшим, чем в области ультразвука, длинам волн значительно более существенными становятся взаимодействия Г. с квазичастицами среды - электронами, фононами, магнонами и др.
Область частот Г. соответствует частотам электромагнитных колебаний дециметрового, сантиметрового и миллиметрового диапазонов (т. н. сверхвысоким частотам - СВЧ). Используя технику генерации и приёма электромагнитных колебаний СВЧ, удалось получить и начать исследование частот Г. ~ 1011 гц .
Частоте 109 гц в воздухе при нормальном атмосферном давлении и комнатной температуре соответствует длина волны Г. 3,4T10-5 см , т. е. эта длина одного порядка с длиной свободного пробега молекул в воздухе при этих условиях. Поскольку упругие волны могут распространяться в упругой среде только при условии, что длины этих волн заметно больше длины свободного пробега в газах (или больше межатомных расстояний в жидкостях и твёрдых телах), то в воздухе и газах при нормальном атмосферном давлении гиперзвуковые волны не распространяются. В жидкостях затухание Г. очень велико и дальность распространения мала. Сравнительно хорошими проводниками Г. являются твёрдые тела в виде монокристаллов, но главным образом лишь при низких температурах. Так, например, даже в монокристалле кварца, отличающемся малым затуханием упругих волн, на частоте 1,5T109 гц продольная гиперзвуковая волна, распространяющаяся вдоль оси Х кристалла, при комнатной температуре ослабляется по амплитуде в 2 раза при прохождении расстояния всего в 1 см . Однако имеются проводники Г. лучше кварца, в которых затухание Г. значительно меньше (например, монокристаллы сапфира, ниобата лития, железо-иттриевого граната и др.).
Долгое время гиперзвуковые волны не удавалось получать искусственным путём (в этом одна из причин выделения этой области спектра упругих волн, названной 'гиперзвуком'), поэтому изучали Г. теплового происхождения. Твёрдое кристаллическое тело можно представить как некоторую объёмную пространственную решётку, в узлах которой расположены атомы или ионы. Тепловое движение представляет собой непрерывные и беспорядочные колебания этих атомов около положения равновесия. Такие колебания можно рассматривать как совокупность продольных и поперечных плоских упругих волн самых различных частот - от самых низких собственных частот упругих колебаний данного тела до частот 1012-1013 гц (далее спектр упругих волн обрывается), распространяющихся по всевозможным направлениям. Эти волны называют также дебаевскими волнами, или тепловыми фононами .
Фонон представляет собой элементарное возбуждение решётки кристалла или квазичастицу с энергией · n и импульсом · n /c , где n - частота, с - скорость звука в кристалле и · . - постоянная Планка. Фонону соответствует плоская упругая волна определ. частоты подобно тому, как фотону соответствует плоская электромагнитная волна определённой частоты. Тепловые фононы имеют широкий спектр частот, тогда как искусственно получаемый Г. может иметь какую-нибудь одну определенную частоту. Поэтому искусственно генерируемый Г. можно представлять как поток когерентных фононов (см. Когерентность ). В жидкостях тепловое движение имеет характер, близкий к характеру теплового движения в твёрдых телах, поэтому в жидкостях, как и в твёрдых телах, тепловое движение непрерывно генерирует некогерентные гиперзвуковые волны.
До того как стало возможным получать Г. искусственным путём, изучение гиперзвуковых волн и их распространения в жидкостях и твёрдых телах проводилось главным образом оптическим методом. Наличие Г. теплового происхождения в оптически прозрачной среде приводит к рассеянию света с образованием нескольких спектральных линий, смещенных на частоту Г. n , т. н. Мандельштама - Бриллюэна рассеяние . Исследования Г. в ряде жидкостей привели к открытию в них зависимости скорости распространения Г. от частоты и аномального поглощения Г. (см. Дисперсия звука ).
Современные методы генерации и приёма Г. основываются главным образом на использовании явлений пьезоэлектричества (возникновения электрических зарядов на поверхности пьезоэлектрического кристалла, например на пластинке кварца, вырезанной определенным образом под действием механической деформации, и, наоборот, деформация кристалла, помещенного в электрическое поле) и магнитострикции (изменения формы и размеров тела при намагничивании и изменения намагниченности при деформации).
Одним из наиболее распространённых методов генерации Г. является возбуждение Г. с поверхности пьезоэлектрического кристалла. Для этого последний своим торцом помещается в ту часть резонатора, где имеется максимальная напряжённость электрического поля СВЧ; если кристалл - не пьезоэлектрик, то на его торец наносится тонкая пьезоэлектрическая плёнка, например из сернистого кадмия. Под действием электрического поля СВЧ возникает переменная деформация с той же частотой, которая распространяется по кристаллу со скоростью Г. в виде продольной, или сдвиговой, волны. При этом источником этой волны служит сама торцовая поверхность кристалла. В свою очередь, механическая деформация вызывает на поверхности кристалла появление электрического заряда и, следовательно, подобным же образом может осуществляться приём Г.
При распространении упругих волн в кристаллах диэлектриков, не содержащих свободных носителей зарядов , эти волны затухают благодаря их нелинейному взаимодействию с тепловыми фононами. Характер этого взаимодействия, а следовательно, и характер затухания зависят от частоты распространяющихся волн. Если частота невелика (область ультразвука), то волна только нарушает равновесное распределение тепловых фононов, которое благодаря случайным неупругим столкновениям их между собой затем восстанавливается; при этом происходит потеря энергии волны. В случае высоких гиперзвуковых частот происходит непосредственное нелинейное взаимодействие Г., искусственно получаемого, и Г. теплового происхождения; когерентные фононы неупругим образом сталкиваются с тепловыми фононами и передают им свою энергию, что в данном случае и определяет потерю энергии Г. С понижением температуры тепловые фононы 'вымораживаются', их становится меньше. Соответственно этому затухание ультразвука и Г. при понижении температуры существенно понижается.
При распространении Г. в кристаллах полупроводников и металлов, где имеются электроны проводимости , кроме взаимодействия Г. с тепловыми фононами, имеет место взаимодействие Г. с электронами. Упругая волна, распространяющаяся в таких кристаллах, почти всегда несёт с собой со скоростью звука локальное электрическое поле. Это связано с тем, что волна деформирует кристаллическую решётку, смещая атомы или ионы из их положения равновесия, что приводит к изменению внутрикристаллических электрических полей. Возникшие электрического поля изменяют движение электронов проводимости и их энергетический спектр. С другой стороны, если почему-либо происходят изменения состояния электронов проводимости, то изменяются внутрикристаллического поля, что вызывает деформации в кристалле. Т. о., взаимодействие электронов проводимости с фононами сопровождается поглощением или испусканием фононов.
Изучение затухания Г. в металлах на электронах проводимости позволяет исследовать важные характеристики металлов (времена релаксации , поверхность Ферми, энергетическую щель в сверхпроводниках и др.).
Взаимодействие между искусственными, или когерентными, фононами и электронами становится существенным в области ультразвуковых и особенно в области гиперзвуковых частот в полупроводниках, обладающих пьезоэлектрическими свойствами (например, кристалл сернистого кадмия, в котором взаимодействие между фононами и электронами проводимости очень сильно). Если к кристаллу приложить постоянное электрическое поле, величина которого такова, что скорость электронов будет несколько больше скорости упругой волны, то электроны будут обгонять упругую волну, отдавая ей энергию и усиливая её, т. е. будет происходить усиление упругих волн. Взаимодействие между когерентными фононами и электронами приводит также к акустоэлектрическому эффекту - явлению, которое состоит в том, что фононы, отдавая свой импульс электронам, создают в кристалле постоянную эдс и постоянный электрический ток. В случае, когда электроны отдают энергию упругой волне, акусто-эдс также возникает, однако имеет противоположный знак.
Рассматривая взаимодействие Г. с электронами, следует принять во внимание тот факт, что электрон, кроме массы и заряда, обладает ещё собственным механическим моментом ( спином ) и связанным с ним магнитным моментом, а также орбитальным магнитным моментом (см. Атом ). Между орбитальным магнитным моментом и спином имеет место спин-орбитальное взаимодействие : если меняется наклон орбиты, несколько меняется и направление спина. Прохождение Г. подходящей частоты и поляризации может вызвать изменение магнитного состояния атомов. Так, при частотах Г. порядка 1010 гц в кристаллах парамагнетиков (см. Парамагнетизм ) взаимодействие Г. со спин-орбитальной системой выражается, например, в явлении акустического парамагнитного резонанса (АПР), аналогичного электронному парамагнитному резонансу (ЭПР) и состоящего в избирательного поглощении Г., обусловленном переходом атомов с одного магнитного уровня на другой. При помощи АПР оказывается возможным изучать переходы между такими уровнями атомов в парамагнетиках, которые являются запрещенными для ЭПР.
Используя взаимодействие когерентных фононов со спин-орбитальной системой, можно в парамагнитных кристаллах при низких температурах усиливать и генерировать гиперзвуковые волны на принципе, сходном с тем, на котором работают квантовые генераторы (см. Квантовая электроника ). В магнитоупорядоченных кристаллах (ферромагнетики, антиферромагнетики, ферриты) распространение гиперзвуковой волны вызывает появление спиновой волны (изменения магнитного момента, передающиеся в виде волны) и, наоборот, спиновая волна вызывает появление гиперзвуковой волны. Т. о., один тип волн порождает другой, поэтому в общем случае в таких кристаллах распространяются не чисто спиновые и упругие волны, а связанные магнитно-упругие волны.
Взаимодействие Г. со светом проявляется, как упоминалось выше, в рассеянии света на Г. теплового происхождения, но эффективность этого взаимодействия очень мала. Однако применив мощный источник света (например, импульс мощного рубинового лазера), можно получить заметное усиление падающим светом упругой волны. В результате можно генерировать интенсивную гиперзвуковую волну в кристалле мощностью несколько десятков квт . В свою очередь, усиленная упругая волна будет в большей степени рассеивать падающий свет, так что при определенных условиях интенсивность рассеянного света может быть одного порядка с падающим; это явление называется вынужденным рассеянием Мандельштама - Бриллюэна.
Т. о., свойства Г. позволяют использовать его как инструмент исследования состояния вещества. Особенно велико его значение для изучения физики твёрдого тела. В области технических применений, развитие которых только начинается, уже сейчас существенно его использование для т. н. акустических линий задержки в области СВЧ (ультразвуковые линии задержки).
В. А. Красильников.