П. называется поверхностный горизонт земной коры, измененный совокупной деятельностью агентов выветривания (см.) при одновременном процессе накопления органических веществ. П. есть самостоятельное естественно-историческое тело — продукт окружающей природы, живущий и закономерно изменяющийся под влиянием внешних условий, в своем распределении на земном шаре подчиняющийся общему физико-географическому закону зональности. Таково естественно-историческое понятие П., введенное в науку, главным образом, школой проф. Докучаева. По другому воззрению, принятому преимущественно западно-европейскими учеными, под П. разумеется вообще среда, служащая для питания растений, независимо от ее генезиса, географии и большинства морфологических признаков; в частных случаях П. называется слой горной породы, в котором распространяются корни растений. Наконец, существуют определения П. менее научные: П. — поверхностные горные породы (одна или несколько), пахотный слой, часть горной породы, населенная организмами, и т. п. Были даже попытки введения понятий натурфилософских: П. определяли, как поверхность соприкосновения геосферы с биосферой (Ризположенский). Настоящая статья содержит в себе следующие части: I) происхождение П.; II) морфологические признаки П.; III) химический состав; IV) механический состав и физические свойства; V) классификация П.; VI) методы исследования П.; VII) литература. I) Происхождение. П. образуется из поверхностной горной породы, получающей название "материнской", путем влияния на нее климатических деятелей (температуры, воздуха, воды и др.), растений и животных, при известном рельефе местности и в течение известного промежутка времени, определяющего почвенный возраст. Относительное значение каждого из почвообразователей не установлено, так как оно сильно варьирует в каждом отдельном случае; общий же характер их деятельности известен. Главнейшая их роль заключается в выветривании горной породы (см. Выветривание), но кроме того, в качестве почвообразователей, они действуют некоторым специфическим образом. Температура, замедляя или ускоряя процесс сгорания органических веществ, влияет на содержание перегноя, или гумуса, а следовательно — на цвет П., их химический состав и пр.; она же, до известной степени, определяет богатство П. растительным и животным населением (опыты Вольни, Костычева и др.). Воздух действует механически и химически. Силой ветра выдуваются тонкие почвенные частицы и отлагаются в другом месте, иногда такими значительными толщами, что образуют особый тип П. эоловых (Бычихин, Высоцкий, Белецкий и др.). Составные части и примеси воздуха — кислород, азот, углекислота, аммиак — вступают в реакции с составными частями П. или непосредственно, или при помощи микроорганизмов (особенно кислород). Избыток кислорода ведет к полному перегоранию П., т. е. обеднению их органическими веществами, недостаток — наоборот, к чрезмерному накоплению (П. болотные, торфяниковые, некот. солонцы). Вода, в качестве механического деятеля, с одной стороны, смывает П. или делает их грубыми, скелетными (латериты, П. крутых склонов), песчанистыми (долинный чернозем, П. пологих склонов), а с другой — обогащает П. тонким материалом или отлагает целые толщи наносного материала (П. аллювиальные), образуя в том и другом случае П. ненормальные. Вода, как химический агент, играет чрезвычайно важную роль в жизни П., главным образом, в качестве растворителя. Особенно благоприятно некоторое среднее содержание влаги (Вольни, Костычев, Нерода и др.); при избытке или недостатке ее происходит недоразвитие или деградация П. (П. северные и влажных тропиков, болотные, солонцы и пр.). Животные и растения принимают большое участие в выветривании горных пород, но, главным образом, своими отмершими частями и экскрементами производят гумификацию П. Из животных наиболее видную роль играют черви, жуки, личинки, грызуны и т. п., а также микроорганизмы. Более других изучена деятельность дождевых червей, достигающая в некоторых местностях поразительных размеров. Так, в Англии ежегодные извержения червей могли бы покрыть страну слоем в полсантиметра толщины (Дарвин); на Мадагаскаре эта деятельность примерно, в 4 раза больше (Келлер). В лесах Дании, благодаря исключительно червям, образовался слой плодородного лесного чернозема (Мюллер). Роль грызунов (сусликов, хомяков, слепцов, сурков и др.) не менее важна. В южно-русских степях кучки выброшенной ими земли занимают иногда 0,1 и более всей площади и достигают 2 — 3 тыс. куб. саж. на 1 кв. версту (Вернадский, Мушкетов, Докучаев, Силантьев). Относительно личинок насекомых и пр. известно, что временами их количество и действие огромны: на пространстве одной десятины насчитывали до 5 миллионов личинок различных насекомых (Докучаев). В последнее время установлена, хотя и мало еше изучена, выдающаяся роль микроорганизмов в деле почвообразования, особенно бактерий и сапрофитных грибков. Число их достигает сотен тысяч и даже миллионов на 1 куб. стм П. в ее верхних горизонтах. Принадлежа к разряду аэробных или анаэробных, микроорганизмы производят всевозможные продукты окисления, раскисления, нитрификации, денитрификации и т. п., особенно при известной комбинации влажности, температуры и пр.; служат простыми разносчиками кислорода и друг. газов; играют роль фермента и т. д. Наиболее изучены нитрифицирующие бактерии Nitrosomonas (переводит аммиак в азотистую кислоту) и Nitrobacter, окисляющий азотистую кислоту в азотную (Шлезинг, Мюнц, Виноградский и др.). Вообще, большинство физико-химических процессов, совершающихся в П., в настоящее время приписывается деятельности почвенных микроорганизмов. Значение растений в образовании и жизни П. настолько велико, что в настоящее время уже обособился особый отдел ботаники, под именем геоботаники, изучающий взаимодействие между П. и растениями. Для почв обычного, нормального происхождения проф. Докучаев установил даже название растительно-наземных. Своей отмершей корневой системой, а частью и надземными частями, растения доставляют главный материал для обогащения П. органическими веществами, причем различные типы и формации растений действуют различно. Особенно резка разница между влиянием травянистой и лесной растительности. Первая, содержа большую массу своих подземных частей (по Габерландту, 120 — 160 пд. на десятину) и находясь в более плохих условиях аэрации, при прочих равных условиях, накопляет в П. больше перегнойных веществ, чем древесная растительность. Типичным производным первой является чернозем (см.), а второй — лесные суглинки (см.), которые во многих случаях, по-видимому, произошли путем дегумификаций чернозема. Не без влияния остается та или другая растительность и на структуру П.: мелкозернистость девственного чернозема и типичная ореховатость лесных суглинков обязаны своим происхождением растительности. Рельеф местности — очень важный фактор в деле почвообразования. Крутизной склона обуславливается механическое действие проточной воды, т. е. обогащение или обеднение П. тонкими и растворимыми веществами, а положением склона относительно стран света — температура и влажность П., а следовательно, почти все внутренние (химико-биологические) процессы почвообразования. При почвенных съемках, при равенстве геологических условий местности, для выемки образцов и при распределении почвенных типов на карте руководствуются, главным образом, рельефом. В самой номенклатуре П. часто видно решающее значение топографических условий: чернозем плато, П. пологих и крутых склонов и т. п. Почвенным возрастом называется время, протекшее с момента выхода поверхностной горной породы из-под воды или льда, т. е. от начала выветривания. Значение возраста в деле почвообразования для молодых П. несомненно, для старых — проблематично. Одни полагают, что выветривание П., накопление органических веществ, увеличение мощности и пр. — беспредельно, другие же, на основании некоторых вычислений, утверждают, что через известный промежуток времени наступает равновесие между приходом и расходом перегнойных и др. веществ в П., которые и делаются спелыми. В последнее время исследования полтавской экспедиции показали, что параллельно с абсолютным поднятием местности в означенной губернии растет и содержание гумуса в черноземах плато (Докучаев и Отоцкий). Проф. Докучаев склонен отнести это соотношение на счет влияния почвенного возраста: чем выше П., тем он старше. Решение вопроса затрудняется тем, что все употреблявшиеся до сих пор методы определения возраста П. крайне неточны (Пфаф, Дарвин, Докучаев и др.). II) Морфологические признаки — цвет, мощность и структура — чрезвычайно важное подспорье при определении П. Цвет их большей частью темный, зависящий от присутствия перегнойных веществ. Интенсивность окраски, в общем, соответствует количеству перегноя и других питательных веществ, за исключением тех случаев, когда П. произошла из темноцветной горной породы (напр., олонецкая черная П., араратская вулканическая и т. п.) или богата сернистым железом. Наибольшей интенсивности темный цвет П. достигает в самом верхнем горизонте, затем книзу окраска бледнеет и постепенно сходит на нет; чаще она однородная, реже — пестрая от включений железа, извести и т. п. Исключение составляют лишь П. болотного и аллювиального происхождения, а также некоторые подзолы и солонцы, где часто бывает нарушена постепенность в окраске. Цвет П. — признак очень важный для систематики, хотя и не всегда надежный, так так меняется в зависимости от освещения, влажности и т. п. Названия многих П. основаны на их окраске: серые земли, каштановые П., чернозем и т. п. Мощностью П. называется толщина всего выветрелого и содержащего перегнойные вещества слоя, от поверхности до материнской породы. На этом протяжении почвенный слой обыкновенно расчленяется на два (редко более) горизонта: верхний — А и переходный — В. Переход в подпочву чаще незаметен, так что мощность П. определяется более или менее приблизительно; только в П. эолового и аллювиального происхождения эта граница обыкновенно резка. Мощность нормальных растительно-наземных П. не превосходит 1—1,5 м, причем, при прочих равных условиях, мощность песчанистых почв значительнее, нежели глинистых. Почти всем девственным (не пахотным) глинистым и суглинистым почвам свойственна особая структура, т. е. способность рассыпаться на отдельности довольно прочные. По величине диаметра этих отдельностей, разделяют почвы на категории: крупноореховатые — диаметром отдельностей более 7 мм, мелкоореховатые в 7—6 мм, зернистые в 5—3 мм, мелкозернистые — 3—1 мм, пороховидные в 1—0,5 мм, пылеватые — менее 0,5 мм. Иногда структура выражена слабо, иногда же, напр. у девственного чернозема и у лесных суглинков — чрезвычайно резко. Своим происхождением она обязана деятельности корней, червям, растрескиванию при высыхании и т. п. К числу факторов, уничтожающих структуру, относятся, главным образом, распахивание и избыток просачивающейся воды. Структура играет чрезвычайно важную роль в физико-химических процессах, совершающихся в П. и служит довольно надежным указателем при определении П. Кроме указанных, для почвенной систематики важны и второстепенные морфологические признаки: количество и характер песчаных зерен, хряща, гальки, валунов, железистых или известковых включений, присутствие кротовин (нор грызунов), ходов червей, характер растительных и животных остатков и т. п. III) Химический состав. П. слагается из веществ органических и минеральных; последние крайне разнообразны, в зависимости от петрографического характера горных пород, вошедших в состав П. Чаще всего встречаются: глина, представляющая идеальный состав Al2O3.2SiO2 + 2Н2О; в таком виде она встречается редко; чаще содержит окислы железа и цеолитные вещества. В чистом виде играет роль исключительно физического агента, особенно своей самой тонкой так наз. коллоидальной частью; химически мало подвижна. В П. ее содержится от долей процента (в песчаных) до 38%. От глины в химическом смысле следует отличать механическую глину, в состав которой входят тонкозернистый кварц, полевой шпат, целоиты и пр.; последней глины в П. всегда больше, чем химической. Цеолиты (водный кремнекислый глинозем, заключающий в себе щелочи или щелочные земли) примешаны обыкновенно к почвенной глине. Будучи химически легко подвижными (разлагаются слабой соляной кислотой и вступают в обмен с щелочными и щелочноземельными солями), они играют важную роль при оценке производительности П. Количество их колеблется от долей процента до 25 — 30%. Окислы кремния (кремнезем SiO2) и железа всегда присутствуют в почве: первые в виде кварцевых зерен и гидрата кремнекислоты, а вторые в виде бурого железняка, реже — магнитного железняка и т. п., т. е. в виде полуторных окислов \[Fe2О3, Fe2(НО)6\] и закиси-окиси Fe2О4. Изредка (в П. болотного происхождения) встречаются и закисные формы железа. Присутствием железа обусловливается, большею частью, буроватая окраска П. в естественном состоянии и красная — после прокаливания. Также обычны соли всевозможных кислот: угольной в форме, главным образом, углекислой извести, реже — магнезии и щелочей; серной — в виде железного купороса FeSO4 и гипса (CaSO4 + 2Н2О); фосфорной — также в виде солей железа и извести (Са3Р2О8, Са2Н2Р2О8, CaH4P2O8, FePO4, Fe3P2O8 и др.); хлористоводородной — чаще в форме хлористых щелочей (в солонцах); азотной и азотистой — в форме селитр и т. п. Кроме перечисленных соединений, в почвенном воздухе обыкновенно находятся, в ничтожном количестве, как результат деятельности микроорганизмов, следующие газообразные примеси: водород, аммиак, метан, сероводород и др. Распределение минеральных веществ в П. обыкновенно довольно равномерное; только в П. молодых можно подметить закономерное убывание или увеличение их по мере приближения к материнской породе. О количестве минеральных веществ и их распределении дает понятие следующий аналаз П. из Екатеринославской губернии (Костычев).
-
| | На глубине ( в дюймах ) |
| - - |
| Цеолитных веществ: | 0 — 6 | 6 —12 | 12 — 18 | 18 — 24 | 24 — 30 | 30 — 36 | 36 — 42 |
| - - - - - - - - |
| Кремнезема (SiO2) | 17,19 | 17,91 | 18,01 | 18,24 | 18,63 | 18,70 | 16,71 |
| - - - - - - - - |
| Глинозема (Al2O3) | 7,29 | 7,64 | 7,81 | 7,89 | 7,95 | 7,90 | 7,02 |
| - - - - - - - - |
| Окиси железа (Fe2О3) | 4,68 | 4,99 | 5,01 | 5,40 | 5,22 | 5,28 | 4,65 |
| - - - - - - - - |
| " марганца | 0,19 | 0,20 | 0,21 | 0,19 | 0,21 | 0,20 | 0,11 |
| - - - - - - - - |
| Извести (СаО) | 1,52 | 1,38 | 1,41 | 1,38 | 1,44 | 1,46 | 1,77 |
| - - - - - - - - |
| Магнезии (MgO) | 1,51 | 1,67 | 1,66 | 1,60 | 1,73 | 1,71 | 1,42 |
| - - - - - - - - |
| Кали (К2О) | 0,70 | 0,78 | 0,77 | 0,80 | 0,82 | 0,81 | 0,72 |
| - - - - - - - - |
| Натра (Na2O) | 0,06 | 0,10 | 0,10 | 0,11 | 0,11 | 0,10 | 0,08 |
| - - - - - - - - |
| Фосфорной кисл. (p2o5) | 0,21 | 0,19 | 0,18 | 0,17 | 0,17 | 0,17 | 0,15 |
| - - - - - - - - |
| Серной кислоты (SO3) | 0,02 | 0,02 | 0,02 | 0,03 | 0,03 | 0,03 | 0,04 |
| - - - - - - - - |
| | 33,37 | 34,88 | 35,18 | 35,81 | 36,31 | 36,37 | 32,05 |
| - - - - - - - - |
| Углекислой извести | 1,41 | 1,08 | 1,08 | 1,31 | 1,18 | 1,13 | 14,04 |
| - - - - - - - - |
| Глины и песка | 54,82 | 53,93 | 54,88 | 55,07 | 56,74 | 57,11 | 49,85 |
- Что касается органических веществ П., то они состоят: 1) из соединений, входящих в состав растительных и животных организмов, и 2) из особых промежуточных соединений между первыми веществами и конечными продуктами их разложения, каковы: вода, углекислота, аммиак и т. д. Эти промежуточные соединения, обыкноновенно окрашивающие П. в темный цвет, носят общее название перегноя, или гумуса. В противность минеральным веществам, количество перегноя обыкновенно постепенно падает от поверхности П. к подпочве, что зависит, по-видимому, от распределения в П. растительннх корней, служащих материалом для образования перегноя; как показывает следующая табличка:
-
| | Относит. число | Содержание |
| Слой П. | корней | перегноя |
| | - - |
| | (по Гельригелю) | (по Костычеву) |
| - - - |
| 1 | 100 | 9,639% (100) |
| - - - |
| 2 | 53—86 | 7,707% (80,3) |
| - - - |
| 3 | 11—46 | 6,714% (70) |
| - - - |
| 4 | 2—27 | 6,605% (58,4) |
| - - - |
| 5 | 0—22 | 3,565% (33,2) |
| - - - |
| 6 | | 3,175% (83) |
| - - - |
| 7 | | 1,105% (16) |
- Несомненно, что в распределении перегноя играет роль и просачивание его (опыты Баракова, Вольни, наблюд. Высоцкого и др.), чем часто нарушается указанная правильность в убывании (особенно в песчанистых П.). Правильность также иногда нарушается вследствие процессов аллювиальных и деградации П. (солонцы, пойменные П. и пр.). Вследствие крайней сложности и малой подвижности большей части перегнойных соединений, природа их мало изучена. На основании исследований Мульдера, Детмера, Грандо, Эггерца, Вольни, Костычева и др., перегной расчленяют на вещества нейтральные, солеобразные (ульмин и гумин) и кислоты — ульминовую, гуминовую, алокреновую и креновую. Ульмин — вещество бурого цвета, гумин — черного; в воде почти не растворимы; в реакции вступают с трудом; вероятно, состоят из смеси сложных соединений; изучены мало. Ульминовая и гуминовая кислоты получаются при действии щелочей на ульмин и гумин; первая бурого цвета, вторая — черного; по составу (С24Н18О9 + зольные вещества) и реакциям чрезвычайно сходны; свежеосажденные слабо растворяются в воде (1/3500), высушенные почти не растворимы (1/13784), образуют простые и двойные соли (типа, например, C60(NH4)6H48O27, С60Са3(NH4)2Н46О27 и т. п.), из которых лишь соли щелочных металлов растворимы; способны раскислять железо, переводить фосфорнокислую известь в растворимое соединение, разлагать углесоли и отчасти силикаты и, вообще, в некоторой степени участвуют в химических процессах. Апокреновая кислота представляет высшую степень окисления гуминовой кислоты (C24H12O12 + N и зольные вещества); легко растворяется в воде; цвет растворов кислоты и солей — бурый; апокреновокислые соли подвижнее гуминовокислых. Креновая (ключевая) кислота, по составу, занимает среднее место между описанными (C24H24O16); растворимость ее и солей наиболее совершенная; растворы и соли бесцветны; из солей нерастворимы лишь окисножелезные и марганцевые. Все указанные кислоты, по предположениям, представляют смесь сложных кислот. Они способны переходить одна в другую при процессах окисления и восстановления (Бараков и др.). Кроме свободных минеральных веществ и минеральных оснований органических кислот, в П. находится некоторое количество минеральных соединений, чрезвычайно прочно связанных с перегнойными веществами. Эта зольная часть перегноя, состоящая из S, Р, Si, Fe, Al и др., носит название органоминеральных веществ, количество которых достигает 10 — 15 и более % всего перегноя и распределяется, примерно, так (анализ Эггерца):
-
| | Глинисто-перегн. П. | Болотная П. |
| - - - |
| Органич. веществ | 88,69% | 96,57% |
| - - - |
| Зольных | 11,81% | 3,43% |
| - - - |
| Из них: |
| - |
| S | 0,91 | 1,12 |
| - - - |
| P | 1,69 | 0,16 |
| - - - |
| SiO2 | 4,39 | 0,47 |
| - - - |
| Fe2O3 + Al2O3 | 3,72 | 1,55 |
| - - - |
| CaO | 0,10 | 0,03 |
| - - - |
| MgO | 0,06 | следы |
| - - - |
| Na2O | 0,12 | 0,05 |
| - - - |
| K2O | 0,32 | 0,04 |
- Характер этих органоминеральных соединений неизвестен. Значение их также не вполне установлено. Грандо, на основании своих известных опытов (получение аммиачно-гуминовой вытяжки, роль ее mati?re noire в питании растений и опыты с диализатором), считает их единственными питательными веществами, удобоусвояемыми растениями. Позднее эта теория подверглась некоторым ограничениям (Эггерц, Костычев, Гаврилов, Нефедо