Значение ЛИНЕЙЧАТЫЕ ПОВЕРХНОСТИ в Энциклопедии Брокгауза и Ефрона

Что такое ЛИНЕЙЧАТЫЕ ПОВЕРХНОСТИ

? Л. поверхностями называются поверхности, образуемые движением прямой линии. Напр., поверхность прямого круглого цилиндра есть Л., так как она может быть образована движением прямой, которая, оставаясь параллельной одному и тому же направлению, опирается на окружность, лежащую в плоскости, перпендикулярной к этому направлению; ряд последовательных положений такой прямой и представляет собой поверхность круглого прямого цилиндра. Движущаяся прямая называется образующей, а окружность, на которую она опирается, направляющей. Название образующей присваивается также каждому отдельному положению прямой, движением которой образуется поверхность. Л. поверхности разделяются на два больших класса: развертывающиеся и косые. К первому классу принадлежат такие поверхности, которые могут быть свернуты из плоскости, а, следовательно, могут быть и развернуты на плоскость; таковы поверхности цилиндрические, образующие которых параллельны одному и тому же направлению; поверхности конические, образующие которых проходят через одну общую точку, называемую вершиной; развертывающаяся винтовая поверхность, образующие которой касательны к винтовой линии, и целый ряд других поверхностей, отличающихся тем свойством, что образующие их касательны к некоторой кривой, называемой ребром возврата. Косые поверхности суть такие Л., которые не могут быть развернуты в плоскость; таковы: косая винтовая поверхность, образующие которой перпендикулярны к оси цилиндра и опираются на винтовую линию, начерченную на этом цилиндре; гиперболоид, образующие которого опираются на три данные прямые; гиперболический параболоид, образующие которого опираются на две данные прямые и параллельны данной плоскости (см. Косая плоскость), и так далее. Поверхности, образующие которых параллельны одной и той же плоскости, называются коноидами. Работы Плюккера и Болля выяснили весьма важное механическое значение одной из коноидальных поверхностей, названной цилиндроидом и играющей такую же роль в сложении винтовых движений и винтовых усилий, какую играет параллелограмм в сложении сил и скоростей (см. Цилиндроид).

Н. Д.

Брокгауз и Ефрон. Энциклопедия Брокгауза и Ефрона.