или высотомеры, употребляемые в лесном хозяйстве для измерения высот стоящих на корне деревьев, могут быть с успехом применяемы и к определению высот различных других предметов, как, например, зданий и т. п. Так как в большинстве случаев основание ствола дерева и точка стояния лица, измеряющего его высоту, лежат в одной горизонтальной плоскости, то Г. определяется только часть высоты; к высоте найденной Г. следует прибавить еще расстояние глаза от поверхности земли. Но если основание ствола дерева лежит выше или ниже той точки, где стоит измеряющий, то к найденной высоте прибавляется расстояние от пересечения ствола дерева горизонтальной плоскостью, проведенной от глаза измеряющего, до поверхности Земли, что определяется или непосредственным измерением, или же при помощи визирования Г. на последнюю точку. Если основание ствола дерева лежит значительно выше той точки, в которой поместился измеряющий с Г., то вся высота дерева найдется как разность между показаниями Г. при визировании на верхушку и основание ствола. Лесные Г. многочисленны и чрезвычайно разнообразны по своему устройству. Самым простейшим и дешевым высотомером считается прямоугольный равнокатетный треугольник (l'equerre de Duhamel), который помещается одним из острых углов возле левого глаза измеряющего; после приведения противолежащего катета в вертикальное положение, при помощи прикрепленного к вершине другого острого угла отвеса, визируют вдоль гипотенузы на вершину дерева из такого места, из которого луч зрения, идущий по гипотенузе, будет падать на самую крайнюю точку вершинного побега дерева; тогда горизонтальное расстояние глаза измеряющего от дерева и будет равно высоте верхней части ствола. На этом же принципе устроены гипсометры Копиша ("Лесной Журнал", 1850) и Дарбуa (D'arbois de Jubaioville, в "Revue des eaux et for ê ts", 1870), где в деревянной палке, или в свободно висящем равностороннем металлическом треугольнике, сделаны, для удобства визирования, два отверстия ? одно горизонтальное, а другое под углом в 45¦. Из новейших Г. наиболее типичны: 1) Измеритель Пресслера (Pressler's Messknecht), состоящий из покрытого лаком куска папки; складывающегося, при употреблении инструмента, в виде трехгранного угла, одно из ребер которого и служит для визирования на верхушку дерева (фиг. 1).
Фиг. 1.
На закругленной по краям вертикальной грани нанесены на скале величины тангенсов углов визирования, при радиусе 100, указываемые, в каждом данном случае, положением нити отвеса на скале и соответствующие величинам высот деревьев в футах, при 100-футовом расстоянии от них Г. При других расстояниях показания скалы умножаются на эти расстояния и делятся на 100 [Основная идея позаимствована у Смалиана, гораздо раньше устроившего Г. на тех же основаниях]. Кроме скалы тангенсов на гранях "измерителя" помещены различные, отчасти графические таблицы, необходимые лесному таксатору и съемщику при производстве вычислений. При повторении визирования на вершину дерева, разность бывает, в среднем, до 2% в определении высоты, а при употреблении диоптров, которые втыкаются в ребро инструмента, для удобства визирования, даже до 1%.
Фиг. 2.
Чтобы получить еще более точные результаты необходимо устранить во время измерения колебание Г. от дрожания руки, что достигается укреплением его на весьма легком стативе-трехножнике (фиг. 1 и 2), удобно складывающемся в виде обыкновенной палки и потому названном Пресслером "лесной тростью" ("Pressler's Mathematische Aschenbro del in Schule, Haus, Wald u. Feld", 1866, и Пресслер M. Р .: "Измеритель" чрезвычайно простой, дешевый, удобно и разнообразно употребляемый инструмент для разного рода измерений и вычислений, предстоящих гг. лесничим, сельским хозяевам и пр.; перев. с немец., с прилож. самого инструмента, СПб., 1855).
2) Зеркальный Г. Фаустманна ? типичный представитель высотомеров с перемещающейся точкой укрепления нити отвеса, сообразно с изменением расстояния инструмента от измеряемого дерева. Характеристическая особенность ? возможность видеть точку пересечения скалы высот (на нижнем крае) нитью отвеса (при положении деревянной доски инструмента в вертикальной плоскости) посредством отражения ее в продолговатом зеркале, укрепленном на шарнире возле предметного диоптра, а следовательно вернее прочесть показание скалы. В расстоянии 2/3 всей длины доски от глазного диоптра сделан в ней паз, в котором двигается металлическая пластинка с прикрепленной в верхней ее части нитью отвеса, а по бокам помещены скалы расстояний от дерева ? одна от 10 до 60, а другая от 60 до 120 фт. Вдвигая, или выдвигая пластинку в пазе и помещая обозначенные на ней черты для совпадения с соответственными показаниями на скалах расстояния, визируют через глазной и предметный диоптры на верхушку ствола дерева; цифра на скале высот, покрытая нитью отвеса, покажет верхнюю часть высоты дерева (фиг. 3).
Фиг. 3.
("Baur's Anleitung zur Aufnahme etc.").
3) Третий весьма характерный тип Г. ? новейший швейцарский, Т. Христена, при употреблении которого нет надобности определять расстояние измеряемого дерева от места нахождения инструмента, но это место должно быть выбрано таким образом, чтобы с него вполне ясно были видны как верхушка, так и вся нижняя часть дерева, возле которой устанавливается вертикально простой прямой кол высотой в 4 м. Инструмент состоит из медной линейки с делениями и небольшими утолщенными выступами на концах (фиг. 4, в 1/4 натуральной величины).
Фиг. 4.
Г. помещают между большим и указательным пальцами левой руки, в верхнем выступе линейки, и, придав последней отвесное направление, стараются дать ей положение, при котором весь измеряемый ствол дерева поместился бы между выступами линейки. Цифра стоящая на линейке, в точке пересечения ее визиром, направленным на верхний конец кола, определит высоту дерева в метрах. Величина делений на линейке зависит от расстояния между ее конечными выступами и длины кола.
Фиг. 5.
Если в О находится глаз измеряющего, AB представляет ось измеряемого ствола дерева, АС ? высота кола, ab ? расстояние между выступами линейки и с точка пересечения скалы линейки визирной линией ОС, направленной на вершину кола, то AB:АС = ab:ас. Но АС = 4 м и ab = 30 см, поэтому АВ = 4 м × (30 см/ac см) = 120/ac м. Чтобы высоту AB определять в частях метра, необходимо должно АВ × ас = 120, т. е. ас должно уменьшаться пропорционально увеличению AB; так, при
AB = 10 20 40 60 м
ас = 12 6 3 2 см
Эти величины ас отложены на скале линейки, начиная от верхнего выступа, и в полученных точках делений скалы сделаны надписи соответствующих им величин AB ? 10, 20, 40... м ("Zeitschrift f ur Forst und Jagdwesen", 1892, 4-tes Heft).
В. Собичевский.