Значение слова МАГНЕТОХИМИЯ в Большой советской энциклопедии, БСЭ

МАГНЕТОХИМИЯ

магнитохимия, раздел физической химии, в котором изучается связь между магнитными и химическими свойствами веществ; кроме того, М. исследует влияние магнитных полей на химические процессы. М. опирается на современную физику магнитных явлений (см. Магнетизм ) и кристаллохимию . Изучение связи между магнитными и химическими свойствами позволяет выяснить особенности химического строения вещества. Для этих целей используют как постоянные, так и переменные магнитные поля. В случае переменных полей необходимо различать магнитные явления, происходящие в отсутствие резонансных эффектов, и явления, непосредственно связанные с резонансом. В первом случае изучение магнитных явлений не отличается в принципе от их исследования в постоянных полях. Наблюдаемые же при определённых условиях в переменных (преимущественно высокочастотных) полях специфические эффекты резонансного поглощения веществом электромагнитной энергии потребовали разработки самостоятельных методов исследования (см. Электронный парамагнитный резонанс , Ядерный магнитный резонанс , Ферромагнитный резонанс , Химическая поляризация ядер ) .

При образовании химической связи спины валентных электронов приобретают антипараллельную ориентацию, что приводит к взаимной компенсации их магнитных моментов. В силу этого большинство химических соединений обладает диамагнитными свойствами (см. Диамагнетизм ) . К диамагнитным веществам относятся, во-первых, ионные соединения (например, NaCl, KCl), у которых электронная структура ионов имитирует электронную структуру атомов благородных газов, и, во-вторых, ковалентные насыщенные неорганические и особенно органические соединения (например, CO2, CH4).

При отсутствии взаимной деформации электронных оболочек диамагнитная восприимчивость соединения аддитивно слагается из восприимчивостей атомов или ионов, входящих в его состав. Сопоставление измеренной на опыте диамагнитной восприимчивости соединения с её значением, вычисленным по аддитивной схеме, позволяет обнаружить деформацию электронных оболочек, связанную с особенностями химического строения. Так, заметное снижение суммарного диамагнетизма органического соединения вызывается наличием в молекуле двойной связи . Ароматическая связь, характеризующаяся движением делокализованных электронов по ароматическому кольцу, приводит, напротив, к значительному увеличению диамагнетизма и к его анизотропии (магнитная восприимчивость c|,измеренная перпендикулярно плоскости ароматического кольца, значительно превышает восприимчивость c||, измеренную параллельно его плоскости). Указанные закономерности позволяют использовать данные измерения магнитной восприимчивости диамагнитных соединений для идентификации этих соединений и получения ориентировочных сведений о характере химических связей.

Для веществ с ненасыщенными химическими связями характерно наличие нескомпенсированных магнитных моментов. В состав таких веществ обычно входят атомы переходных элементов (например, элементов группы железа, редкоземельных элементов). Ионные соединения этого типа обнаруживают обычно парамагнитные свойства (см. Парамагнетизм ) . Исследование температурного хода магнитной восприимчивости этих веществ позволяет определить величину ионного магнитного момента и судить о валентности составляющих атомов и их электронной структуре. Наиболее часто встречаются, однако, вещества, содержащие атомы переходных элементов, с ковалентной связью. Эти химические соединения могут быть как парамагнитными, так и ферромагнитными или антиферромагнитными (см. Ферромагнетизм и Ферримагнетизм ) . В первых двух случаях значение магнитной восприимчивости и её температурный ход позволяют оценить величину эффективного магнитного момента и сделать определённые предположения о характере химической связи. У ферромагнитных и ферримагнитных соединений по зависимости их магнитных свойств от напряжённости поля и температуры также удаётся в ряде случаев определить эффективный магнитный момент иона (или атома) переходного элемента и число неспаренных электронов в нём, то есть определить его электронную конфигурацию. Такие данные дополняют результаты других физико-химических исследований.

Постоянные магнитные поля непосредственно не оказывают влияния ни на характер химической связи, ни на химическое равновесие. Однако в ряде случаев они могут влиять на кинетику некоторых химических процессов.

Существенное влияние на некоторые физико-химические процессы в газовой и жидкой фазах могут оказывать внешние магнитные поля, воздействующие на коагуляцию мельчайших частичек железной окалины, зачастую в значительном количестве присутствующих в воздухе и воде. Магнетохимические измерения широко применяются для обнаружения этих дисперсных включений и контроля чистоты химического эксперимента.

Лит.: Селвуд П., Магнетохимия, пер. с англ., М., 1958; Figgis В. N., The magnetic properties of transition metalcomplexes, 'Progress in in organic Chemistry'1964, v. 6; Haberditzl W., Magnetochemie, B., 1968: Дорфман Я. Г., Диамагнетизм и химическая связь, М., 1961; Соколик И. А., Франкович Е. Л., Влияние магнитных полей на фотопроцессы в органических твердых телах, 'Успехи физических наук', 1973, т. Ill, в. 2 .

Я. Г. Дорфман.

Большая советская энциклопедия, БСЭ.